Evaluate
6a^{2}-7a+26
Expand
6a^{2}-7a+26
Share
Copied to clipboard
2a^{2}-\left(a-2\left(1+2a^{2}-3a+12\right)\right)
Use the distributive property to multiply -3 by a-4.
2a^{2}-\left(a-2\left(13+2a^{2}-3a\right)\right)
Add 1 and 12 to get 13.
2a^{2}-\left(a-26-4a^{2}+6a\right)
Use the distributive property to multiply -2 by 13+2a^{2}-3a.
2a^{2}-\left(7a-26-4a^{2}\right)
Combine a and 6a to get 7a.
2a^{2}-7a+26+4a^{2}
To find the opposite of 7a-26-4a^{2}, find the opposite of each term.
6a^{2}-7a+26
Combine 2a^{2} and 4a^{2} to get 6a^{2}.
2a^{2}-\left(a-2\left(1+2a^{2}-3a+12\right)\right)
Use the distributive property to multiply -3 by a-4.
2a^{2}-\left(a-2\left(13+2a^{2}-3a\right)\right)
Add 1 and 12 to get 13.
2a^{2}-\left(a-26-4a^{2}+6a\right)
Use the distributive property to multiply -2 by 13+2a^{2}-3a.
2a^{2}-\left(7a-26-4a^{2}\right)
Combine a and 6a to get 7a.
2a^{2}-7a+26+4a^{2}
To find the opposite of 7a-26-4a^{2}, find the opposite of each term.
6a^{2}-7a+26
Combine 2a^{2} and 4a^{2} to get 6a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}