Evaluate
18a^{14}
Differentiate w.r.t. a
252a^{13}
Share
Copied to clipboard
2a^{6}\times 3\times 3a^{8}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
2a^{14}\times 3\times 3
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
6a^{14}\times 3
Multiply 2 and 3 to get 6.
18a^{14}
Multiply 6 and 3 to get 18.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{6}\times 3\times 3a^{8})
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{14}\times 3\times 3)
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
\frac{\mathrm{d}}{\mathrm{d}a}(6a^{14}\times 3)
Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(18a^{14})
Multiply 6 and 3 to get 18.
14\times 18a^{14-1}
The derivative of ax^{n} is nax^{n-1}.
252a^{14-1}
Multiply 14 times 18.
252a^{13}
Subtract 1 from 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}