Solve for a
a=-3
a=2
Share
Copied to clipboard
2aa+a\times 2-4=8
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
2a^{2}+a\times 2-4=8
Multiply a and a to get a^{2}.
2a^{2}+a\times 2-4-8=0
Subtract 8 from both sides.
2a^{2}+a\times 2-12=0
Subtract 8 from -4 to get -12.
2a^{2}+2a-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-2±\sqrt{2^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-2±\sqrt{4-4\times 2\left(-12\right)}}{2\times 2}
Square 2.
a=\frac{-2±\sqrt{4-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
a=\frac{-2±\sqrt{4+96}}{2\times 2}
Multiply -8 times -12.
a=\frac{-2±\sqrt{100}}{2\times 2}
Add 4 to 96.
a=\frac{-2±10}{2\times 2}
Take the square root of 100.
a=\frac{-2±10}{4}
Multiply 2 times 2.
a=\frac{8}{4}
Now solve the equation a=\frac{-2±10}{4} when ± is plus. Add -2 to 10.
a=2
Divide 8 by 4.
a=-\frac{12}{4}
Now solve the equation a=\frac{-2±10}{4} when ± is minus. Subtract 10 from -2.
a=-3
Divide -12 by 4.
a=2 a=-3
The equation is now solved.
2aa+a\times 2-4=8
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
2a^{2}+a\times 2-4=8
Multiply a and a to get a^{2}.
2a^{2}+a\times 2=8+4
Add 4 to both sides.
2a^{2}+a\times 2=12
Add 8 and 4 to get 12.
2a^{2}+2a=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2a^{2}+2a}{2}=\frac{12}{2}
Divide both sides by 2.
a^{2}+\frac{2}{2}a=\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}+a=\frac{12}{2}
Divide 2 by 2.
a^{2}+a=6
Divide 12 by 2.
a^{2}+a+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+a+\frac{1}{4}=6+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+a+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(a+\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor a^{2}+a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
a+\frac{1}{2}=\frac{5}{2} a+\frac{1}{2}=-\frac{5}{2}
Simplify.
a=2 a=-3
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}