Solve for a
a=-\frac{b}{4\left(b+3\right)}
b\neq -3
Solve for b
b=-\frac{12a}{4a+1}
a\neq -\frac{1}{4}
Share
Copied to clipboard
2a+4ab+2b=b-10a
Use the distributive property to multiply 4a+2 by b.
2a+4ab+2b+10a=b
Add 10a to both sides.
12a+4ab+2b=b
Combine 2a and 10a to get 12a.
12a+4ab=b-2b
Subtract 2b from both sides.
12a+4ab=-b
Combine b and -2b to get -b.
\left(12+4b\right)a=-b
Combine all terms containing a.
\left(4b+12\right)a=-b
The equation is in standard form.
\frac{\left(4b+12\right)a}{4b+12}=-\frac{b}{4b+12}
Divide both sides by 4b+12.
a=-\frac{b}{4b+12}
Dividing by 4b+12 undoes the multiplication by 4b+12.
a=-\frac{b}{4\left(b+3\right)}
Divide -b by 4b+12.
2a+4ab+2b=b-10a
Use the distributive property to multiply 4a+2 by b.
2a+4ab+2b-b=-10a
Subtract b from both sides.
2a+4ab+b=-10a
Combine 2b and -b to get b.
4ab+b=-10a-2a
Subtract 2a from both sides.
4ab+b=-12a
Combine -10a and -2a to get -12a.
\left(4a+1\right)b=-12a
Combine all terms containing b.
\frac{\left(4a+1\right)b}{4a+1}=-\frac{12a}{4a+1}
Divide both sides by 4a+1.
b=-\frac{12a}{4a+1}
Dividing by 4a+1 undoes the multiplication by 4a+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}