Solve for W
W=-2+\frac{5}{2v}
v\neq 0
Solve for v
v=\frac{5}{2\left(W+2\right)}
W\neq -2
Share
Copied to clipboard
2Wv=v\left(-4\right)+5
Multiply both sides of the equation by v.
2vW=5-4v
The equation is in standard form.
\frac{2vW}{2v}=\frac{5-4v}{2v}
Divide both sides by 2v.
W=\frac{5-4v}{2v}
Dividing by 2v undoes the multiplication by 2v.
W=-2+\frac{5}{2v}
Divide -4v+5 by 2v.
2Wv=v\left(-4\right)+5
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by v.
2Wv-v\left(-4\right)=5
Subtract v\left(-4\right) from both sides.
2Wv+4v=5
Multiply -1 and -4 to get 4.
\left(2W+4\right)v=5
Combine all terms containing v.
\frac{\left(2W+4\right)v}{2W+4}=\frac{5}{2W+4}
Divide both sides by 4+2W.
v=\frac{5}{2W+4}
Dividing by 4+2W undoes the multiplication by 4+2W.
v=\frac{5}{2\left(W+2\right)}
Divide 5 by 4+2W.
v=\frac{5}{2\left(W+2\right)}\text{, }v\neq 0
Variable v cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}