Solve for x
x=3
Graph
Share
Copied to clipboard
2-3x\left(4-x\right)-x^{2}=-16
Subtract x^{2} from both sides.
2-3x\left(4-x\right)-x^{2}+16=0
Add 16 to both sides.
2-12x+3x^{2}-x^{2}+16=0
Use the distributive property to multiply -3x by 4-x.
2-12x+2x^{2}+16=0
Combine 3x^{2} and -x^{2} to get 2x^{2}.
18-12x+2x^{2}=0
Add 2 and 16 to get 18.
9-6x+x^{2}=0
Divide both sides by 2.
x^{2}-6x+9=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-6 ab=1\times 9=9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,-9 -3,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 9.
-1-9=-10 -3-3=-6
Calculate the sum for each pair.
a=-3 b=-3
The solution is the pair that gives sum -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Rewrite x^{2}-6x+9 as \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Factor out x in the first and -3 in the second group.
\left(x-3\right)\left(x-3\right)
Factor out common term x-3 by using distributive property.
\left(x-3\right)^{2}
Rewrite as a binomial square.
x=3
To find equation solution, solve x-3=0.
2-3x\left(4-x\right)-x^{2}=-16
Subtract x^{2} from both sides.
2-3x\left(4-x\right)-x^{2}+16=0
Add 16 to both sides.
2-12x+3x^{2}-x^{2}+16=0
Use the distributive property to multiply -3x by 4-x.
2-12x+2x^{2}+16=0
Combine 3x^{2} and -x^{2} to get 2x^{2}.
18-12x+2x^{2}=0
Add 2 and 16 to get 18.
2x^{2}-12x+18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -12 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
Multiply -8 times 18.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
Add 144 to -144.
x=-\frac{-12}{2\times 2}
Take the square root of 0.
x=\frac{12}{2\times 2}
The opposite of -12 is 12.
x=\frac{12}{4}
Multiply 2 times 2.
x=3
Divide 12 by 4.
2-3x\left(4-x\right)-x^{2}=-16
Subtract x^{2} from both sides.
2-12x+3x^{2}-x^{2}=-16
Use the distributive property to multiply -3x by 4-x.
2-12x+2x^{2}=-16
Combine 3x^{2} and -x^{2} to get 2x^{2}.
-12x+2x^{2}=-16-2
Subtract 2 from both sides.
-12x+2x^{2}=-18
Subtract 2 from -16 to get -18.
2x^{2}-12x=-18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-12x}{2}=-\frac{18}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{18}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-6x=-\frac{18}{2}
Divide -12 by 2.
x^{2}-6x=-9
Divide -18 by 2.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-9+9
Square -3.
x^{2}-6x+9=0
Add -9 to 9.
\left(x-3\right)^{2}=0
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-3=0 x-3=0
Simplify.
x=3 x=3
Add 3 to both sides of the equation.
x=3
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}