Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-4x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\times 2}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -4 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\times 2}}{2\left(-3\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+12\times 2}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-4\right)±\sqrt{16+24}}{2\left(-3\right)}
Multiply 12 times 2.
x=\frac{-\left(-4\right)±\sqrt{40}}{2\left(-3\right)}
Add 16 to 24.
x=\frac{-\left(-4\right)±2\sqrt{10}}{2\left(-3\right)}
Take the square root of 40.
x=\frac{4±2\sqrt{10}}{2\left(-3\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{10}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{10}+4}{-6}
Now solve the equation x=\frac{4±2\sqrt{10}}{-6} when ± is plus. Add 4 to 2\sqrt{10}.
x=\frac{-\sqrt{10}-2}{3}
Divide 4+2\sqrt{10} by -6.
x=\frac{4-2\sqrt{10}}{-6}
Now solve the equation x=\frac{4±2\sqrt{10}}{-6} when ± is minus. Subtract 2\sqrt{10} from 4.
x=\frac{\sqrt{10}-2}{3}
Divide 4-2\sqrt{10} by -6.
x=\frac{-\sqrt{10}-2}{3} x=\frac{\sqrt{10}-2}{3}
The equation is now solved.
-3x^{2}-4x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}-4x+2-2=-2
Subtract 2 from both sides of the equation.
-3x^{2}-4x=-2
Subtracting 2 from itself leaves 0.
\frac{-3x^{2}-4x}{-3}=-\frac{2}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{4}{-3}\right)x=-\frac{2}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{4}{3}x=-\frac{2}{-3}
Divide -4 by -3.
x^{2}+\frac{4}{3}x=\frac{2}{3}
Divide -2 by -3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{2}{3}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{2}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{10}{9}
Add \frac{2}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=\frac{10}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{\sqrt{10}}{3} x+\frac{2}{3}=-\frac{\sqrt{10}}{3}
Simplify.
x=\frac{\sqrt{10}-2}{3} x=\frac{-\sqrt{10}-2}{3}
Subtract \frac{2}{3} from both sides of the equation.