Solve for b
b=16
b=-16
Share
Copied to clipboard
b^{2}\times 2+b^{2}\left(-1\right)=16^{2}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b^{2}.
b^{2}=16^{2}
Combine b^{2}\times 2 and b^{2}\left(-1\right) to get b^{2}.
b^{2}=256
Calculate 16 to the power of 2 and get 256.
b^{2}-256=0
Subtract 256 from both sides.
\left(b-16\right)\left(b+16\right)=0
Consider b^{2}-256. Rewrite b^{2}-256 as b^{2}-16^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=16 b=-16
To find equation solutions, solve b-16=0 and b+16=0.
b^{2}\times 2+b^{2}\left(-1\right)=16^{2}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b^{2}.
b^{2}=16^{2}
Combine b^{2}\times 2 and b^{2}\left(-1\right) to get b^{2}.
b^{2}=256
Calculate 16 to the power of 2 and get 256.
b=16 b=-16
Take the square root of both sides of the equation.
b^{2}\times 2+b^{2}\left(-1\right)=16^{2}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b^{2}.
b^{2}=16^{2}
Combine b^{2}\times 2 and b^{2}\left(-1\right) to get b^{2}.
b^{2}=256
Calculate 16 to the power of 2 and get 256.
b^{2}-256=0
Subtract 256 from both sides.
b=\frac{0±\sqrt{0^{2}-4\left(-256\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-256\right)}}{2}
Square 0.
b=\frac{0±\sqrt{1024}}{2}
Multiply -4 times -256.
b=\frac{0±32}{2}
Take the square root of 1024.
b=16
Now solve the equation b=\frac{0±32}{2} when ± is plus. Divide 32 by 2.
b=-16
Now solve the equation b=\frac{0±32}{2} when ± is minus. Divide -32 by 2.
b=16 b=-16
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}