Evaluate
1
Real Part
1
Share
Copied to clipboard
2\times \frac{\left(1+i\right)\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)}
Multiply both numerator and denominator of \frac{1+i}{2+2i} by the complex conjugate of the denominator, 2-2i.
2\times \frac{\left(1+i\right)\left(2-2i\right)}{2^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\times \frac{\left(1+i\right)\left(2-2i\right)}{8}
By definition, i^{2} is -1. Calculate the denominator.
2\times \frac{1\times 2+1\times \left(-2i\right)+2i-2i^{2}}{8}
Multiply complex numbers 1+i and 2-2i like you multiply binomials.
2\times \frac{1\times 2+1\times \left(-2i\right)+2i-2\left(-1\right)}{8}
By definition, i^{2} is -1.
2\times \frac{2-2i+2i+2}{8}
Do the multiplications in 1\times 2+1\times \left(-2i\right)+2i-2\left(-1\right).
2\times \frac{2+2+\left(-2+2\right)i}{8}
Combine the real and imaginary parts in 2-2i+2i+2.
2\times \frac{4}{8}
Do the additions in 2+2+\left(-2+2\right)i.
2\times \frac{1}{2}
Divide 4 by 8 to get \frac{1}{2}.
1
Cancel out 2 and 2.
Re(2\times \frac{\left(1+i\right)\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)})
Multiply both numerator and denominator of \frac{1+i}{2+2i} by the complex conjugate of the denominator, 2-2i.
Re(2\times \frac{\left(1+i\right)\left(2-2i\right)}{2^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(2\times \frac{\left(1+i\right)\left(2-2i\right)}{8})
By definition, i^{2} is -1. Calculate the denominator.
Re(2\times \frac{1\times 2+1\times \left(-2i\right)+2i-2i^{2}}{8})
Multiply complex numbers 1+i and 2-2i like you multiply binomials.
Re(2\times \frac{1\times 2+1\times \left(-2i\right)+2i-2\left(-1\right)}{8})
By definition, i^{2} is -1.
Re(2\times \frac{2-2i+2i+2}{8})
Do the multiplications in 1\times 2+1\times \left(-2i\right)+2i-2\left(-1\right).
Re(2\times \frac{2+2+\left(-2+2\right)i}{8})
Combine the real and imaginary parts in 2-2i+2i+2.
Re(2\times \frac{4}{8})
Do the additions in 2+2+\left(-2+2\right)i.
Re(2\times \frac{1}{2})
Divide 4 by 8 to get \frac{1}{2}.
Re(1)
Cancel out 2 and 2.
1
The real part of 1 is 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}