Solve for x
x=\frac{y+2}{2}
Solve for y
y=2\left(x-1\right)
Graph
Share
Copied to clipboard
2x-2y+2+4y=3y+4
Use the distributive property to multiply 2 by x-y+1.
2x+2y+2=3y+4
Combine -2y and 4y to get 2y.
2x+2=3y+4-2y
Subtract 2y from both sides.
2x+2=y+4
Combine 3y and -2y to get y.
2x=y+4-2
Subtract 2 from both sides.
2x=y+2
Subtract 2 from 4 to get 2.
\frac{2x}{2}=\frac{y+2}{2}
Divide both sides by 2.
x=\frac{y+2}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{y}{2}+1
Divide y+2 by 2.
2x-2y+2+4y=3y+4
Use the distributive property to multiply 2 by x-y+1.
2x+2y+2=3y+4
Combine -2y and 4y to get 2y.
2x+2y+2-3y=4
Subtract 3y from both sides.
2x-y+2=4
Combine 2y and -3y to get -y.
-y+2=4-2x
Subtract 2x from both sides.
-y=4-2x-2
Subtract 2 from both sides.
-y=2-2x
Subtract 2 from 4 to get 2.
\frac{-y}{-1}=\frac{2-2x}{-1}
Divide both sides by -1.
y=\frac{2-2x}{-1}
Dividing by -1 undoes the multiplication by -1.
y=2x-2
Divide 2-2x by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}