Solve for x
x=13
x=-7
Graph
Share
Copied to clipboard
\left(x-3\right)^{2}=\frac{200}{2}
Divide both sides by 2.
\left(x-3\right)^{2}=100
Divide 200 by 2 to get 100.
x^{2}-6x+9=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-100=0
Subtract 100 from both sides.
x^{2}-6x-91=0
Subtract 100 from 9 to get -91.
a+b=-6 ab=-91
To solve the equation, factor x^{2}-6x-91 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-91 7,-13
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -91.
1-91=-90 7-13=-6
Calculate the sum for each pair.
a=-13 b=7
The solution is the pair that gives sum -6.
\left(x-13\right)\left(x+7\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=13 x=-7
To find equation solutions, solve x-13=0 and x+7=0.
\left(x-3\right)^{2}=\frac{200}{2}
Divide both sides by 2.
\left(x-3\right)^{2}=100
Divide 200 by 2 to get 100.
x^{2}-6x+9=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-100=0
Subtract 100 from both sides.
x^{2}-6x-91=0
Subtract 100 from 9 to get -91.
a+b=-6 ab=1\left(-91\right)=-91
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-91. To find a and b, set up a system to be solved.
1,-91 7,-13
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -91.
1-91=-90 7-13=-6
Calculate the sum for each pair.
a=-13 b=7
The solution is the pair that gives sum -6.
\left(x^{2}-13x\right)+\left(7x-91\right)
Rewrite x^{2}-6x-91 as \left(x^{2}-13x\right)+\left(7x-91\right).
x\left(x-13\right)+7\left(x-13\right)
Factor out x in the first and 7 in the second group.
\left(x-13\right)\left(x+7\right)
Factor out common term x-13 by using distributive property.
x=13 x=-7
To find equation solutions, solve x-13=0 and x+7=0.
\left(x-3\right)^{2}=\frac{200}{2}
Divide both sides by 2.
\left(x-3\right)^{2}=100
Divide 200 by 2 to get 100.
x^{2}-6x+9=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-100=0
Subtract 100 from both sides.
x^{2}-6x-91=0
Subtract 100 from 9 to get -91.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-91\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -91 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-91\right)}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+364}}{2}
Multiply -4 times -91.
x=\frac{-\left(-6\right)±\sqrt{400}}{2}
Add 36 to 364.
x=\frac{-\left(-6\right)±20}{2}
Take the square root of 400.
x=\frac{6±20}{2}
The opposite of -6 is 6.
x=\frac{26}{2}
Now solve the equation x=\frac{6±20}{2} when ± is plus. Add 6 to 20.
x=13
Divide 26 by 2.
x=-\frac{14}{2}
Now solve the equation x=\frac{6±20}{2} when ± is minus. Subtract 20 from 6.
x=-7
Divide -14 by 2.
x=13 x=-7
The equation is now solved.
\left(x-3\right)^{2}=\frac{200}{2}
Divide both sides by 2.
\left(x-3\right)^{2}=100
Divide 200 by 2 to get 100.
\sqrt{\left(x-3\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x-3=10 x-3=-10
Simplify.
x=13 x=-7
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}