Evaluate
8x-19
Expand
8x-19
Graph
Quiz
Polynomial
5 problems similar to:
2 ( x - 2 ) ( x + 3 ) - 3 ( x - 1 ) ^ { 2 } + ( x + 2 ) ( x - 2 )
Share
Copied to clipboard
\left(2x-4\right)\left(x+3\right)-3\left(x-1\right)^{2}+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply 2 by x-2.
2x^{2}+2x-12-3\left(x-1\right)^{2}+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply 2x-4 by x+3 and combine like terms.
2x^{2}+2x-12-3\left(x^{2}-2x+1\right)+\left(x+2\right)\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}+2x-12-3x^{2}+6x-3+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply -3 by x^{2}-2x+1.
-x^{2}+2x-12+6x-3+\left(x+2\right)\left(x-2\right)
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+8x-12-3+\left(x+2\right)\left(x-2\right)
Combine 2x and 6x to get 8x.
-x^{2}+8x-15+\left(x+2\right)\left(x-2\right)
Subtract 3 from -12 to get -15.
-x^{2}+8x-15+x^{2}-4
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
8x-15-4
Combine -x^{2} and x^{2} to get 0.
8x-19
Subtract 4 from -15 to get -19.
\left(2x-4\right)\left(x+3\right)-3\left(x-1\right)^{2}+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply 2 by x-2.
2x^{2}+2x-12-3\left(x-1\right)^{2}+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply 2x-4 by x+3 and combine like terms.
2x^{2}+2x-12-3\left(x^{2}-2x+1\right)+\left(x+2\right)\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}+2x-12-3x^{2}+6x-3+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply -3 by x^{2}-2x+1.
-x^{2}+2x-12+6x-3+\left(x+2\right)\left(x-2\right)
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+8x-12-3+\left(x+2\right)\left(x-2\right)
Combine 2x and 6x to get 8x.
-x^{2}+8x-15+\left(x+2\right)\left(x-2\right)
Subtract 3 from -12 to get -15.
-x^{2}+8x-15+x^{2}-4
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
8x-15-4
Combine -x^{2} and x^{2} to get 0.
8x-19
Subtract 4 from -15 to get -19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}