Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-4\right)\left(x+3\right)-3\left(x-1\right)^{2}+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply 2 by x-2.
2x^{2}+2x-12-3\left(x-1\right)^{2}+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply 2x-4 by x+3 and combine like terms.
2x^{2}+2x-12-3\left(x^{2}-2x+1\right)+\left(x+2\right)\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}+2x-12-3x^{2}+6x-3+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply -3 by x^{2}-2x+1.
-x^{2}+2x-12+6x-3+\left(x+2\right)\left(x-2\right)
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+8x-12-3+\left(x+2\right)\left(x-2\right)
Combine 2x and 6x to get 8x.
-x^{2}+8x-15+\left(x+2\right)\left(x-2\right)
Subtract 3 from -12 to get -15.
-x^{2}+8x-15+x^{2}-4
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
8x-15-4
Combine -x^{2} and x^{2} to get 0.
8x-19
Subtract 4 from -15 to get -19.
\left(2x-4\right)\left(x+3\right)-3\left(x-1\right)^{2}+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply 2 by x-2.
2x^{2}+2x-12-3\left(x-1\right)^{2}+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply 2x-4 by x+3 and combine like terms.
2x^{2}+2x-12-3\left(x^{2}-2x+1\right)+\left(x+2\right)\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}+2x-12-3x^{2}+6x-3+\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply -3 by x^{2}-2x+1.
-x^{2}+2x-12+6x-3+\left(x+2\right)\left(x-2\right)
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+8x-12-3+\left(x+2\right)\left(x-2\right)
Combine 2x and 6x to get 8x.
-x^{2}+8x-15+\left(x+2\right)\left(x-2\right)
Subtract 3 from -12 to get -15.
-x^{2}+8x-15+x^{2}-4
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
8x-15-4
Combine -x^{2} and x^{2} to get 0.
8x-19
Subtract 4 from -15 to get -19.