Evaluate
\frac{\left(2x-3\right)\left(2x^{2}-1\right)\left(x^{2}+1\right)}{x^{2}}
Expand
4x^{3}-6x^{2}+2x-3-\frac{2}{x}+\frac{3}{x^{2}}
Graph
Quiz
Polynomial
5 problems similar to:
2 ( x - \frac { 1 } { 2 x } ) ( x + \frac { 1 } { x } ) ( 2 x - 3 )
Share
Copied to clipboard
2\left(\frac{x\times 2x}{2x}-\frac{1}{2x}\right)\left(x+\frac{1}{x}\right)\left(2x-3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2x}{2x}.
2\times \frac{x\times 2x-1}{2x}\left(x+\frac{1}{x}\right)\left(2x-3\right)
Since \frac{x\times 2x}{2x} and \frac{1}{2x} have the same denominator, subtract them by subtracting their numerators.
2\times \frac{2x^{2}-1}{2x}\left(x+\frac{1}{x}\right)\left(2x-3\right)
Do the multiplications in x\times 2x-1.
2\times \frac{2x^{2}-1}{2x}\left(\frac{xx}{x}+\frac{1}{x}\right)\left(2x-3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
2\times \frac{2x^{2}-1}{2x}\times \frac{xx+1}{x}\left(2x-3\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
2\times \frac{2x^{2}-1}{2x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Do the multiplications in xx+1.
\frac{2\left(2x^{2}-1\right)}{2x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Express 2\times \frac{2x^{2}-1}{2x} as a single fraction.
\frac{2x^{2}-1}{x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Cancel out 2 in both numerator and denominator.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)}{xx}\left(2x-3\right)
Multiply \frac{2x^{2}-1}{x} times \frac{x^{2}+1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)\left(2x-3\right)}{xx}
Express \frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)}{xx}\left(2x-3\right) as a single fraction.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)\left(2x-3\right)}{x^{2}}
Multiply x and x to get x^{2}.
\frac{\left(2x^{4}+2x^{2}-x^{2}-1\right)\left(2x-3\right)}{x^{2}}
Apply the distributive property by multiplying each term of 2x^{2}-1 by each term of x^{2}+1.
\frac{\left(2x^{4}+x^{2}-1\right)\left(2x-3\right)}{x^{2}}
Combine 2x^{2} and -x^{2} to get x^{2}.
\frac{4x^{5}-6x^{4}+2x^{3}-3x^{2}-2x+3}{x^{2}}
Apply the distributive property by multiplying each term of 2x^{4}+x^{2}-1 by each term of 2x-3.
2\left(\frac{x\times 2x}{2x}-\frac{1}{2x}\right)\left(x+\frac{1}{x}\right)\left(2x-3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2x}{2x}.
2\times \frac{x\times 2x-1}{2x}\left(x+\frac{1}{x}\right)\left(2x-3\right)
Since \frac{x\times 2x}{2x} and \frac{1}{2x} have the same denominator, subtract them by subtracting their numerators.
2\times \frac{2x^{2}-1}{2x}\left(x+\frac{1}{x}\right)\left(2x-3\right)
Do the multiplications in x\times 2x-1.
2\times \frac{2x^{2}-1}{2x}\left(\frac{xx}{x}+\frac{1}{x}\right)\left(2x-3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
2\times \frac{2x^{2}-1}{2x}\times \frac{xx+1}{x}\left(2x-3\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
2\times \frac{2x^{2}-1}{2x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Do the multiplications in xx+1.
\frac{2\left(2x^{2}-1\right)}{2x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Express 2\times \frac{2x^{2}-1}{2x} as a single fraction.
\frac{2x^{2}-1}{x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Cancel out 2 in both numerator and denominator.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)}{xx}\left(2x-3\right)
Multiply \frac{2x^{2}-1}{x} times \frac{x^{2}+1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)\left(2x-3\right)}{xx}
Express \frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)}{xx}\left(2x-3\right) as a single fraction.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)\left(2x-3\right)}{x^{2}}
Multiply x and x to get x^{2}.
\frac{\left(2x^{4}+2x^{2}-x^{2}-1\right)\left(2x-3\right)}{x^{2}}
Apply the distributive property by multiplying each term of 2x^{2}-1 by each term of x^{2}+1.
\frac{\left(2x^{4}+x^{2}-1\right)\left(2x-3\right)}{x^{2}}
Combine 2x^{2} and -x^{2} to get x^{2}.
\frac{4x^{5}-6x^{4}+2x^{3}-3x^{2}-2x+3}{x^{2}}
Apply the distributive property by multiplying each term of 2x^{4}+x^{2}-1 by each term of 2x-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}