Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(\frac{x\times 2x}{2x}-\frac{1}{2x}\right)\left(x+\frac{1}{x}\right)\left(2x-3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2x}{2x}.
2\times \frac{x\times 2x-1}{2x}\left(x+\frac{1}{x}\right)\left(2x-3\right)
Since \frac{x\times 2x}{2x} and \frac{1}{2x} have the same denominator, subtract them by subtracting their numerators.
2\times \frac{2x^{2}-1}{2x}\left(x+\frac{1}{x}\right)\left(2x-3\right)
Do the multiplications in x\times 2x-1.
2\times \frac{2x^{2}-1}{2x}\left(\frac{xx}{x}+\frac{1}{x}\right)\left(2x-3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
2\times \frac{2x^{2}-1}{2x}\times \frac{xx+1}{x}\left(2x-3\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
2\times \frac{2x^{2}-1}{2x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Do the multiplications in xx+1.
\frac{2\left(2x^{2}-1\right)}{2x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Express 2\times \frac{2x^{2}-1}{2x} as a single fraction.
\frac{2x^{2}-1}{x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Cancel out 2 in both numerator and denominator.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)}{xx}\left(2x-3\right)
Multiply \frac{2x^{2}-1}{x} times \frac{x^{2}+1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)\left(2x-3\right)}{xx}
Express \frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)}{xx}\left(2x-3\right) as a single fraction.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)\left(2x-3\right)}{x^{2}}
Multiply x and x to get x^{2}.
\frac{\left(2x^{4}+2x^{2}-x^{2}-1\right)\left(2x-3\right)}{x^{2}}
Apply the distributive property by multiplying each term of 2x^{2}-1 by each term of x^{2}+1.
\frac{\left(2x^{4}+x^{2}-1\right)\left(2x-3\right)}{x^{2}}
Combine 2x^{2} and -x^{2} to get x^{2}.
\frac{4x^{5}-6x^{4}+2x^{3}-3x^{2}-2x+3}{x^{2}}
Apply the distributive property by multiplying each term of 2x^{4}+x^{2}-1 by each term of 2x-3.
2\left(\frac{x\times 2x}{2x}-\frac{1}{2x}\right)\left(x+\frac{1}{x}\right)\left(2x-3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2x}{2x}.
2\times \frac{x\times 2x-1}{2x}\left(x+\frac{1}{x}\right)\left(2x-3\right)
Since \frac{x\times 2x}{2x} and \frac{1}{2x} have the same denominator, subtract them by subtracting their numerators.
2\times \frac{2x^{2}-1}{2x}\left(x+\frac{1}{x}\right)\left(2x-3\right)
Do the multiplications in x\times 2x-1.
2\times \frac{2x^{2}-1}{2x}\left(\frac{xx}{x}+\frac{1}{x}\right)\left(2x-3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
2\times \frac{2x^{2}-1}{2x}\times \frac{xx+1}{x}\left(2x-3\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
2\times \frac{2x^{2}-1}{2x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Do the multiplications in xx+1.
\frac{2\left(2x^{2}-1\right)}{2x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Express 2\times \frac{2x^{2}-1}{2x} as a single fraction.
\frac{2x^{2}-1}{x}\times \frac{x^{2}+1}{x}\left(2x-3\right)
Cancel out 2 in both numerator and denominator.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)}{xx}\left(2x-3\right)
Multiply \frac{2x^{2}-1}{x} times \frac{x^{2}+1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)\left(2x-3\right)}{xx}
Express \frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)}{xx}\left(2x-3\right) as a single fraction.
\frac{\left(2x^{2}-1\right)\left(x^{2}+1\right)\left(2x-3\right)}{x^{2}}
Multiply x and x to get x^{2}.
\frac{\left(2x^{4}+2x^{2}-x^{2}-1\right)\left(2x-3\right)}{x^{2}}
Apply the distributive property by multiplying each term of 2x^{2}-1 by each term of x^{2}+1.
\frac{\left(2x^{4}+x^{2}-1\right)\left(2x-3\right)}{x^{2}}
Combine 2x^{2} and -x^{2} to get x^{2}.
\frac{4x^{5}-6x^{4}+2x^{3}-3x^{2}-2x+3}{x^{2}}
Apply the distributive property by multiplying each term of 2x^{4}+x^{2}-1 by each term of 2x-3.