Solve for x
x=2\sqrt{3}+4\approx 7.464101615
x=4-2\sqrt{3}\approx 0.535898385
Graph
Share
Copied to clipboard
2x^{2}-10x=6x-8
Use the distributive property to multiply 2 by x^{2}-5x.
2x^{2}-10x-6x=-8
Subtract 6x from both sides.
2x^{2}-16x=-8
Combine -10x and -6x to get -16x.
2x^{2}-16x+8=0
Add 8 to both sides.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 2\times 8}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -16 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 2\times 8}}{2\times 2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-8\times 8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-16\right)±\sqrt{256-64}}{2\times 2}
Multiply -8 times 8.
x=\frac{-\left(-16\right)±\sqrt{192}}{2\times 2}
Add 256 to -64.
x=\frac{-\left(-16\right)±8\sqrt{3}}{2\times 2}
Take the square root of 192.
x=\frac{16±8\sqrt{3}}{2\times 2}
The opposite of -16 is 16.
x=\frac{16±8\sqrt{3}}{4}
Multiply 2 times 2.
x=\frac{8\sqrt{3}+16}{4}
Now solve the equation x=\frac{16±8\sqrt{3}}{4} when ± is plus. Add 16 to 8\sqrt{3}.
x=2\sqrt{3}+4
Divide 16+8\sqrt{3} by 4.
x=\frac{16-8\sqrt{3}}{4}
Now solve the equation x=\frac{16±8\sqrt{3}}{4} when ± is minus. Subtract 8\sqrt{3} from 16.
x=4-2\sqrt{3}
Divide 16-8\sqrt{3} by 4.
x=2\sqrt{3}+4 x=4-2\sqrt{3}
The equation is now solved.
2x^{2}-10x=6x-8
Use the distributive property to multiply 2 by x^{2}-5x.
2x^{2}-10x-6x=-8
Subtract 6x from both sides.
2x^{2}-16x=-8
Combine -10x and -6x to get -16x.
\frac{2x^{2}-16x}{2}=-\frac{8}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{16}{2}\right)x=-\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-8x=-\frac{8}{2}
Divide -16 by 2.
x^{2}-8x=-4
Divide -8 by 2.
x^{2}-8x+\left(-4\right)^{2}=-4+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-4+16
Square -4.
x^{2}-8x+16=12
Add -4 to 16.
\left(x-4\right)^{2}=12
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
x-4=2\sqrt{3} x-4=-2\sqrt{3}
Simplify.
x=2\sqrt{3}+4 x=4-2\sqrt{3}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}