Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)-7\left(x^{2}-1\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
2\left(x^{4}-2x^{2}+1\right)-7\left(x^{2}-1\right)+6=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2x^{4}-4x^{2}+2-7\left(x^{2}-1\right)+6=0
Use the distributive property to multiply 2 by x^{4}-2x^{2}+1.
2x^{4}-4x^{2}+2-7x^{2}+7+6=0
Use the distributive property to multiply -7 by x^{2}-1.
2x^{4}-11x^{2}+2+7+6=0
Combine -4x^{2} and -7x^{2} to get -11x^{2}.
2x^{4}-11x^{2}+9+6=0
Add 2 and 7 to get 9.
2x^{4}-11x^{2}+15=0
Add 9 and 6 to get 15.
2t^{2}-11t+15=0
Substitute t for x^{2}.
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\times 15}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -11 for b, and 15 for c in the quadratic formula.
t=\frac{11±1}{4}
Do the calculations.
t=3 t=\frac{5}{2}
Solve the equation t=\frac{11±1}{4} when ± is plus and when ± is minus.
x=\sqrt{3} x=-\sqrt{3} x=\frac{\sqrt{10}}{2} x=-\frac{\sqrt{10}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.