Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}+6x+9\right)=5\left(x+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+12x+18=5\left(x+3\right)
Use the distributive property to multiply 2 by x^{2}+6x+9.
2x^{2}+12x+18=5x+15
Use the distributive property to multiply 5 by x+3.
2x^{2}+12x+18-5x=15
Subtract 5x from both sides.
2x^{2}+7x+18=15
Combine 12x and -5x to get 7x.
2x^{2}+7x+18-15=0
Subtract 15 from both sides.
2x^{2}+7x+3=0
Subtract 15 from 18 to get 3.
a+b=7 ab=2\times 3=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=1 b=6
The solution is the pair that gives sum 7.
\left(2x^{2}+x\right)+\left(6x+3\right)
Rewrite 2x^{2}+7x+3 as \left(2x^{2}+x\right)+\left(6x+3\right).
x\left(2x+1\right)+3\left(2x+1\right)
Factor out x in the first and 3 in the second group.
\left(2x+1\right)\left(x+3\right)
Factor out common term 2x+1 by using distributive property.
x=-\frac{1}{2} x=-3
To find equation solutions, solve 2x+1=0 and x+3=0.
2\left(x^{2}+6x+9\right)=5\left(x+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+12x+18=5\left(x+3\right)
Use the distributive property to multiply 2 by x^{2}+6x+9.
2x^{2}+12x+18=5x+15
Use the distributive property to multiply 5 by x+3.
2x^{2}+12x+18-5x=15
Subtract 5x from both sides.
2x^{2}+7x+18=15
Combine 12x and -5x to get 7x.
2x^{2}+7x+18-15=0
Subtract 15 from both sides.
2x^{2}+7x+3=0
Subtract 15 from 18 to get 3.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 3}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 7 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 3}}{2\times 2}
Square 7.
x=\frac{-7±\sqrt{49-8\times 3}}{2\times 2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{49-24}}{2\times 2}
Multiply -8 times 3.
x=\frac{-7±\sqrt{25}}{2\times 2}
Add 49 to -24.
x=\frac{-7±5}{2\times 2}
Take the square root of 25.
x=\frac{-7±5}{4}
Multiply 2 times 2.
x=-\frac{2}{4}
Now solve the equation x=\frac{-7±5}{4} when ± is plus. Add -7 to 5.
x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{12}{4}
Now solve the equation x=\frac{-7±5}{4} when ± is minus. Subtract 5 from -7.
x=-3
Divide -12 by 4.
x=-\frac{1}{2} x=-3
The equation is now solved.
2\left(x^{2}+6x+9\right)=5\left(x+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+12x+18=5\left(x+3\right)
Use the distributive property to multiply 2 by x^{2}+6x+9.
2x^{2}+12x+18=5x+15
Use the distributive property to multiply 5 by x+3.
2x^{2}+12x+18-5x=15
Subtract 5x from both sides.
2x^{2}+7x+18=15
Combine 12x and -5x to get 7x.
2x^{2}+7x=15-18
Subtract 18 from both sides.
2x^{2}+7x=-3
Subtract 18 from 15 to get -3.
\frac{2x^{2}+7x}{2}=-\frac{3}{2}
Divide both sides by 2.
x^{2}+\frac{7}{2}x=-\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
Add -\frac{3}{2} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{5}{4} x+\frac{7}{4}=-\frac{5}{4}
Simplify.
x=-\frac{1}{2} x=-3
Subtract \frac{7}{4} from both sides of the equation.