Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}+6x+9\right)=-4x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+12x+18=-4x
Use the distributive property to multiply 2 by x^{2}+6x+9.
2x^{2}+12x+18+4x=0
Add 4x to both sides.
2x^{2}+16x+18=0
Combine 12x and 4x to get 16x.
x=\frac{-16±\sqrt{16^{2}-4\times 2\times 18}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 16 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 2\times 18}}{2\times 2}
Square 16.
x=\frac{-16±\sqrt{256-8\times 18}}{2\times 2}
Multiply -4 times 2.
x=\frac{-16±\sqrt{256-144}}{2\times 2}
Multiply -8 times 18.
x=\frac{-16±\sqrt{112}}{2\times 2}
Add 256 to -144.
x=\frac{-16±4\sqrt{7}}{2\times 2}
Take the square root of 112.
x=\frac{-16±4\sqrt{7}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{7}-16}{4}
Now solve the equation x=\frac{-16±4\sqrt{7}}{4} when ± is plus. Add -16 to 4\sqrt{7}.
x=\sqrt{7}-4
Divide -16+4\sqrt{7} by 4.
x=\frac{-4\sqrt{7}-16}{4}
Now solve the equation x=\frac{-16±4\sqrt{7}}{4} when ± is minus. Subtract 4\sqrt{7} from -16.
x=-\sqrt{7}-4
Divide -16-4\sqrt{7} by 4.
x=\sqrt{7}-4 x=-\sqrt{7}-4
The equation is now solved.
2\left(x^{2}+6x+9\right)=-4x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+12x+18=-4x
Use the distributive property to multiply 2 by x^{2}+6x+9.
2x^{2}+12x+18+4x=0
Add 4x to both sides.
2x^{2}+16x+18=0
Combine 12x and 4x to get 16x.
2x^{2}+16x=-18
Subtract 18 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+16x}{2}=-\frac{18}{2}
Divide both sides by 2.
x^{2}+\frac{16}{2}x=-\frac{18}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+8x=-\frac{18}{2}
Divide 16 by 2.
x^{2}+8x=-9
Divide -18 by 2.
x^{2}+8x+4^{2}=-9+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-9+16
Square 4.
x^{2}+8x+16=7
Add -9 to 16.
\left(x+4\right)^{2}=7
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+4=\sqrt{7} x+4=-\sqrt{7}
Simplify.
x=\sqrt{7}-4 x=-\sqrt{7}-4
Subtract 4 from both sides of the equation.
2\left(x^{2}+6x+9\right)=-4x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+12x+18=-4x
Use the distributive property to multiply 2 by x^{2}+6x+9.
2x^{2}+12x+18+4x=0
Add 4x to both sides.
2x^{2}+16x+18=0
Combine 12x and 4x to get 16x.
x=\frac{-16±\sqrt{16^{2}-4\times 2\times 18}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 16 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 2\times 18}}{2\times 2}
Square 16.
x=\frac{-16±\sqrt{256-8\times 18}}{2\times 2}
Multiply -4 times 2.
x=\frac{-16±\sqrt{256-144}}{2\times 2}
Multiply -8 times 18.
x=\frac{-16±\sqrt{112}}{2\times 2}
Add 256 to -144.
x=\frac{-16±4\sqrt{7}}{2\times 2}
Take the square root of 112.
x=\frac{-16±4\sqrt{7}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{7}-16}{4}
Now solve the equation x=\frac{-16±4\sqrt{7}}{4} when ± is plus. Add -16 to 4\sqrt{7}.
x=\sqrt{7}-4
Divide -16+4\sqrt{7} by 4.
x=\frac{-4\sqrt{7}-16}{4}
Now solve the equation x=\frac{-16±4\sqrt{7}}{4} when ± is minus. Subtract 4\sqrt{7} from -16.
x=-\sqrt{7}-4
Divide -16-4\sqrt{7} by 4.
x=\sqrt{7}-4 x=-\sqrt{7}-4
The equation is now solved.
2\left(x^{2}+6x+9\right)=-4x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+12x+18=-4x
Use the distributive property to multiply 2 by x^{2}+6x+9.
2x^{2}+12x+18+4x=0
Add 4x to both sides.
2x^{2}+16x+18=0
Combine 12x and 4x to get 16x.
2x^{2}+16x=-18
Subtract 18 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+16x}{2}=-\frac{18}{2}
Divide both sides by 2.
x^{2}+\frac{16}{2}x=-\frac{18}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+8x=-\frac{18}{2}
Divide 16 by 2.
x^{2}+8x=-9
Divide -18 by 2.
x^{2}+8x+4^{2}=-9+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-9+16
Square 4.
x^{2}+8x+16=7
Add -9 to 16.
\left(x+4\right)^{2}=7
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+4=\sqrt{7} x+4=-\sqrt{7}
Simplify.
x=\sqrt{7}-4 x=-\sqrt{7}-4
Subtract 4 from both sides of the equation.