Solve for x
x = \frac{\sqrt{265} - 3}{4} \approx 3.319705149
x=\frac{-\sqrt{265}-3}{4}\approx -4.819705149
Graph
Share
Copied to clipboard
2x+28-\left(2x-1\right)\left(x+2\right)=2\left(x-1\right)
Use the distributive property to multiply 2 by x+14.
2x+28-\left(2x^{2}+3x-2\right)=2\left(x-1\right)
Use the distributive property to multiply 2x-1 by x+2 and combine like terms.
2x+28-2x^{2}-3x+2=2\left(x-1\right)
To find the opposite of 2x^{2}+3x-2, find the opposite of each term.
-x+28-2x^{2}+2=2\left(x-1\right)
Combine 2x and -3x to get -x.
-x+30-2x^{2}=2\left(x-1\right)
Add 28 and 2 to get 30.
-x+30-2x^{2}=2x-2
Use the distributive property to multiply 2 by x-1.
-x+30-2x^{2}-2x=-2
Subtract 2x from both sides.
-3x+30-2x^{2}=-2
Combine -x and -2x to get -3x.
-3x+30-2x^{2}+2=0
Add 2 to both sides.
-3x+32-2x^{2}=0
Add 30 and 2 to get 32.
-2x^{2}-3x+32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)\times 32}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -3 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)\times 32}}{2\left(-2\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+8\times 32}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-3\right)±\sqrt{9+256}}{2\left(-2\right)}
Multiply 8 times 32.
x=\frac{-\left(-3\right)±\sqrt{265}}{2\left(-2\right)}
Add 9 to 256.
x=\frac{3±\sqrt{265}}{2\left(-2\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{265}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{265}+3}{-4}
Now solve the equation x=\frac{3±\sqrt{265}}{-4} when ± is plus. Add 3 to \sqrt{265}.
x=\frac{-\sqrt{265}-3}{4}
Divide 3+\sqrt{265} by -4.
x=\frac{3-\sqrt{265}}{-4}
Now solve the equation x=\frac{3±\sqrt{265}}{-4} when ± is minus. Subtract \sqrt{265} from 3.
x=\frac{\sqrt{265}-3}{4}
Divide 3-\sqrt{265} by -4.
x=\frac{-\sqrt{265}-3}{4} x=\frac{\sqrt{265}-3}{4}
The equation is now solved.
2x+28-\left(2x-1\right)\left(x+2\right)=2\left(x-1\right)
Use the distributive property to multiply 2 by x+14.
2x+28-\left(2x^{2}+3x-2\right)=2\left(x-1\right)
Use the distributive property to multiply 2x-1 by x+2 and combine like terms.
2x+28-2x^{2}-3x+2=2\left(x-1\right)
To find the opposite of 2x^{2}+3x-2, find the opposite of each term.
-x+28-2x^{2}+2=2\left(x-1\right)
Combine 2x and -3x to get -x.
-x+30-2x^{2}=2\left(x-1\right)
Add 28 and 2 to get 30.
-x+30-2x^{2}=2x-2
Use the distributive property to multiply 2 by x-1.
-x+30-2x^{2}-2x=-2
Subtract 2x from both sides.
-3x+30-2x^{2}=-2
Combine -x and -2x to get -3x.
-3x-2x^{2}=-2-30
Subtract 30 from both sides.
-3x-2x^{2}=-32
Subtract 30 from -2 to get -32.
-2x^{2}-3x=-32
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-3x}{-2}=-\frac{32}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{3}{-2}\right)x=-\frac{32}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{3}{2}x=-\frac{32}{-2}
Divide -3 by -2.
x^{2}+\frac{3}{2}x=16
Divide -32 by -2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=16+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=16+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{265}{16}
Add 16 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{265}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{265}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{265}}{4} x+\frac{3}{4}=-\frac{\sqrt{265}}{4}
Simplify.
x=\frac{\sqrt{265}-3}{4} x=\frac{-\sqrt{265}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}