Solve for x
x<-\frac{23}{7}
Graph
Share
Copied to clipboard
14\left(x+1\right)-7\left(\frac{7x+5}{7}-2\right)<0
Multiply both sides of the equation by 7. Since 7 is positive, the inequality direction remains the same.
14x+14-7\left(\frac{7x+5}{7}-2\right)<0
Use the distributive property to multiply 14 by x+1.
14x+14-7\left(x+\frac{5}{7}-2\right)<0
Divide each term of 7x+5 by 7 to get x+\frac{5}{7}.
14x+14-7\left(x+\frac{5}{7}-\frac{14}{7}\right)<0
Convert 2 to fraction \frac{14}{7}.
14x+14-7\left(x+\frac{5-14}{7}\right)<0
Since \frac{5}{7} and \frac{14}{7} have the same denominator, subtract them by subtracting their numerators.
14x+14-7\left(x-\frac{9}{7}\right)<0
Subtract 14 from 5 to get -9.
14x+14-7x-7\left(-\frac{9}{7}\right)<0
Use the distributive property to multiply -7 by x-\frac{9}{7}.
14x+14-7x+9<0
Multiply -7 times -\frac{9}{7}.
7x+14+9<0
Combine 14x and -7x to get 7x.
7x+23<0
Add 14 and 9 to get 23.
7x<-23
Subtract 23 from both sides. Anything subtracted from zero gives its negation.
x<-\frac{23}{7}
Divide both sides by 7. Since 7 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}