Solve for x
x=-\frac{25}{26}\approx -0.961538462
Graph
Share
Copied to clipboard
14x+20=5\left(8x+9\right)
Use the distributive property to multiply 2 by 7x+10.
14x+20=40x+45
Use the distributive property to multiply 5 by 8x+9.
14x+20-40x=45
Subtract 40x from both sides.
-26x+20=45
Combine 14x and -40x to get -26x.
-26x=45-20
Subtract 20 from both sides.
-26x=25
Subtract 20 from 45 to get 25.
x=\frac{25}{-26}
Divide both sides by -26.
x=-\frac{25}{26}
Fraction \frac{25}{-26} can be rewritten as -\frac{25}{26} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}