Solve for m
m = -\frac{20}{7} = -2\frac{6}{7} \approx -2.857142857
Share
Copied to clipboard
10-2m=5\left(6+m\right)
Use the distributive property to multiply 2 by 5-m.
10-2m=30+5m
Use the distributive property to multiply 5 by 6+m.
10-2m-5m=30
Subtract 5m from both sides.
10-7m=30
Combine -2m and -5m to get -7m.
-7m=30-10
Subtract 10 from both sides.
-7m=20
Subtract 10 from 30 to get 20.
m=\frac{20}{-7}
Divide both sides by -7.
m=-\frac{20}{7}
Fraction \frac{20}{-7} can be rewritten as -\frac{20}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}