Solve for x
x=2
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
2\left(9x^{2}-24x+16\right)+1=9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
18x^{2}-48x+32+1=9
Use the distributive property to multiply 2 by 9x^{2}-24x+16.
18x^{2}-48x+33=9
Add 32 and 1 to get 33.
18x^{2}-48x+33-9=0
Subtract 9 from both sides.
18x^{2}-48x+24=0
Subtract 9 from 33 to get 24.
3x^{2}-8x+4=0
Divide both sides by 6.
a+b=-8 ab=3\times 4=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-6 b=-2
The solution is the pair that gives sum -8.
\left(3x^{2}-6x\right)+\left(-2x+4\right)
Rewrite 3x^{2}-8x+4 as \left(3x^{2}-6x\right)+\left(-2x+4\right).
3x\left(x-2\right)-2\left(x-2\right)
Factor out 3x in the first and -2 in the second group.
\left(x-2\right)\left(3x-2\right)
Factor out common term x-2 by using distributive property.
x=2 x=\frac{2}{3}
To find equation solutions, solve x-2=0 and 3x-2=0.
2\left(9x^{2}-24x+16\right)+1=9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
18x^{2}-48x+32+1=9
Use the distributive property to multiply 2 by 9x^{2}-24x+16.
18x^{2}-48x+33=9
Add 32 and 1 to get 33.
18x^{2}-48x+33-9=0
Subtract 9 from both sides.
18x^{2}-48x+24=0
Subtract 9 from 33 to get 24.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 18\times 24}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, -48 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 18\times 24}}{2\times 18}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304-72\times 24}}{2\times 18}
Multiply -4 times 18.
x=\frac{-\left(-48\right)±\sqrt{2304-1728}}{2\times 18}
Multiply -72 times 24.
x=\frac{-\left(-48\right)±\sqrt{576}}{2\times 18}
Add 2304 to -1728.
x=\frac{-\left(-48\right)±24}{2\times 18}
Take the square root of 576.
x=\frac{48±24}{2\times 18}
The opposite of -48 is 48.
x=\frac{48±24}{36}
Multiply 2 times 18.
x=\frac{72}{36}
Now solve the equation x=\frac{48±24}{36} when ± is plus. Add 48 to 24.
x=2
Divide 72 by 36.
x=\frac{24}{36}
Now solve the equation x=\frac{48±24}{36} when ± is minus. Subtract 24 from 48.
x=\frac{2}{3}
Reduce the fraction \frac{24}{36} to lowest terms by extracting and canceling out 12.
x=2 x=\frac{2}{3}
The equation is now solved.
2\left(9x^{2}-24x+16\right)+1=9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
18x^{2}-48x+32+1=9
Use the distributive property to multiply 2 by 9x^{2}-24x+16.
18x^{2}-48x+33=9
Add 32 and 1 to get 33.
18x^{2}-48x=9-33
Subtract 33 from both sides.
18x^{2}-48x=-24
Subtract 33 from 9 to get -24.
\frac{18x^{2}-48x}{18}=-\frac{24}{18}
Divide both sides by 18.
x^{2}+\left(-\frac{48}{18}\right)x=-\frac{24}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}-\frac{8}{3}x=-\frac{24}{18}
Reduce the fraction \frac{-48}{18} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{8}{3}x=-\frac{4}{3}
Reduce the fraction \frac{-24}{18} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
Add -\frac{4}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{2}{3} x-\frac{4}{3}=-\frac{2}{3}
Simplify.
x=2 x=\frac{2}{3}
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}