Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(9x^{2}-12x+4\right)-18=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
18x^{2}-24x+8-18=0
Use the distributive property to multiply 2 by 9x^{2}-12x+4.
18x^{2}-24x-10=0
Subtract 18 from 8 to get -10.
9x^{2}-12x-5=0
Divide both sides by 2.
a+b=-12 ab=9\left(-5\right)=-45
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-45 3,-15 5,-9
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -45.
1-45=-44 3-15=-12 5-9=-4
Calculate the sum for each pair.
a=-15 b=3
The solution is the pair that gives sum -12.
\left(9x^{2}-15x\right)+\left(3x-5\right)
Rewrite 9x^{2}-12x-5 as \left(9x^{2}-15x\right)+\left(3x-5\right).
3x\left(3x-5\right)+3x-5
Factor out 3x in 9x^{2}-15x.
\left(3x-5\right)\left(3x+1\right)
Factor out common term 3x-5 by using distributive property.
x=\frac{5}{3} x=-\frac{1}{3}
To find equation solutions, solve 3x-5=0 and 3x+1=0.
2\left(9x^{2}-12x+4\right)-18=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
18x^{2}-24x+8-18=0
Use the distributive property to multiply 2 by 9x^{2}-12x+4.
18x^{2}-24x-10=0
Subtract 18 from 8 to get -10.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 18\left(-10\right)}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, -24 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 18\left(-10\right)}}{2\times 18}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-72\left(-10\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{-\left(-24\right)±\sqrt{576+720}}{2\times 18}
Multiply -72 times -10.
x=\frac{-\left(-24\right)±\sqrt{1296}}{2\times 18}
Add 576 to 720.
x=\frac{-\left(-24\right)±36}{2\times 18}
Take the square root of 1296.
x=\frac{24±36}{2\times 18}
The opposite of -24 is 24.
x=\frac{24±36}{36}
Multiply 2 times 18.
x=\frac{60}{36}
Now solve the equation x=\frac{24±36}{36} when ± is plus. Add 24 to 36.
x=\frac{5}{3}
Reduce the fraction \frac{60}{36} to lowest terms by extracting and canceling out 12.
x=-\frac{12}{36}
Now solve the equation x=\frac{24±36}{36} when ± is minus. Subtract 36 from 24.
x=-\frac{1}{3}
Reduce the fraction \frac{-12}{36} to lowest terms by extracting and canceling out 12.
x=\frac{5}{3} x=-\frac{1}{3}
The equation is now solved.
2\left(9x^{2}-12x+4\right)-18=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
18x^{2}-24x+8-18=0
Use the distributive property to multiply 2 by 9x^{2}-12x+4.
18x^{2}-24x-10=0
Subtract 18 from 8 to get -10.
18x^{2}-24x=10
Add 10 to both sides. Anything plus zero gives itself.
\frac{18x^{2}-24x}{18}=\frac{10}{18}
Divide both sides by 18.
x^{2}+\left(-\frac{24}{18}\right)x=\frac{10}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}-\frac{4}{3}x=\frac{10}{18}
Reduce the fraction \frac{-24}{18} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{4}{3}x=\frac{5}{9}
Reduce the fraction \frac{10}{18} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{5}{9}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{5+4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=1
Add \frac{5}{9} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{3}\right)^{2}=1
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-\frac{2}{3}=1 x-\frac{2}{3}=-1
Simplify.
x=\frac{5}{3} x=-\frac{1}{3}
Add \frac{2}{3} to both sides of the equation.