Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=-3
Graph
Share
Copied to clipboard
2\left(9x^{2}+30x+25\right)-10=22
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
18x^{2}+60x+50-10=22
Use the distributive property to multiply 2 by 9x^{2}+30x+25.
18x^{2}+60x+40=22
Subtract 10 from 50 to get 40.
18x^{2}+60x+40-22=0
Subtract 22 from both sides.
18x^{2}+60x+18=0
Subtract 22 from 40 to get 18.
3x^{2}+10x+3=0
Divide both sides by 6.
a+b=10 ab=3\times 3=9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
1,9 3,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 9.
1+9=10 3+3=6
Calculate the sum for each pair.
a=1 b=9
The solution is the pair that gives sum 10.
\left(3x^{2}+x\right)+\left(9x+3\right)
Rewrite 3x^{2}+10x+3 as \left(3x^{2}+x\right)+\left(9x+3\right).
x\left(3x+1\right)+3\left(3x+1\right)
Factor out x in the first and 3 in the second group.
\left(3x+1\right)\left(x+3\right)
Factor out common term 3x+1 by using distributive property.
x=-\frac{1}{3} x=-3
To find equation solutions, solve 3x+1=0 and x+3=0.
2\left(9x^{2}+30x+25\right)-10=22
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
18x^{2}+60x+50-10=22
Use the distributive property to multiply 2 by 9x^{2}+30x+25.
18x^{2}+60x+40=22
Subtract 10 from 50 to get 40.
18x^{2}+60x+40-22=0
Subtract 22 from both sides.
18x^{2}+60x+18=0
Subtract 22 from 40 to get 18.
x=\frac{-60±\sqrt{60^{2}-4\times 18\times 18}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 60 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 18\times 18}}{2\times 18}
Square 60.
x=\frac{-60±\sqrt{3600-72\times 18}}{2\times 18}
Multiply -4 times 18.
x=\frac{-60±\sqrt{3600-1296}}{2\times 18}
Multiply -72 times 18.
x=\frac{-60±\sqrt{2304}}{2\times 18}
Add 3600 to -1296.
x=\frac{-60±48}{2\times 18}
Take the square root of 2304.
x=\frac{-60±48}{36}
Multiply 2 times 18.
x=-\frac{12}{36}
Now solve the equation x=\frac{-60±48}{36} when ± is plus. Add -60 to 48.
x=-\frac{1}{3}
Reduce the fraction \frac{-12}{36} to lowest terms by extracting and canceling out 12.
x=-\frac{108}{36}
Now solve the equation x=\frac{-60±48}{36} when ± is minus. Subtract 48 from -60.
x=-3
Divide -108 by 36.
x=-\frac{1}{3} x=-3
The equation is now solved.
2\left(9x^{2}+30x+25\right)-10=22
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
18x^{2}+60x+50-10=22
Use the distributive property to multiply 2 by 9x^{2}+30x+25.
18x^{2}+60x+40=22
Subtract 10 from 50 to get 40.
18x^{2}+60x=22-40
Subtract 40 from both sides.
18x^{2}+60x=-18
Subtract 40 from 22 to get -18.
\frac{18x^{2}+60x}{18}=-\frac{18}{18}
Divide both sides by 18.
x^{2}+\frac{60}{18}x=-\frac{18}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{10}{3}x=-\frac{18}{18}
Reduce the fraction \frac{60}{18} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{10}{3}x=-1
Divide -18 by 18.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-1+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-1+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{16}{9}
Add -1 to \frac{25}{9}.
\left(x+\frac{5}{3}\right)^{2}=\frac{16}{9}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{4}{3} x+\frac{5}{3}=-\frac{4}{3}
Simplify.
x=-\frac{1}{3} x=-3
Subtract \frac{5}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}