Solve for x
x=\frac{\sqrt{106}-13}{9}\approx -0.30048554
x=\frac{-\sqrt{106}-13}{9}\approx -2.588403349
Graph
Share
Copied to clipboard
2\left(9x^{2}+24x+16\right)+4\left(x-3\right)=6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+4\right)^{2}.
18x^{2}+48x+32+4\left(x-3\right)=6
Use the distributive property to multiply 2 by 9x^{2}+24x+16.
18x^{2}+48x+32+4x-12=6
Use the distributive property to multiply 4 by x-3.
18x^{2}+52x+32-12=6
Combine 48x and 4x to get 52x.
18x^{2}+52x+20=6
Subtract 12 from 32 to get 20.
18x^{2}+52x+20-6=0
Subtract 6 from both sides.
18x^{2}+52x+14=0
Subtract 6 from 20 to get 14.
x=\frac{-52±\sqrt{52^{2}-4\times 18\times 14}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 52 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\times 18\times 14}}{2\times 18}
Square 52.
x=\frac{-52±\sqrt{2704-72\times 14}}{2\times 18}
Multiply -4 times 18.
x=\frac{-52±\sqrt{2704-1008}}{2\times 18}
Multiply -72 times 14.
x=\frac{-52±\sqrt{1696}}{2\times 18}
Add 2704 to -1008.
x=\frac{-52±4\sqrt{106}}{2\times 18}
Take the square root of 1696.
x=\frac{-52±4\sqrt{106}}{36}
Multiply 2 times 18.
x=\frac{4\sqrt{106}-52}{36}
Now solve the equation x=\frac{-52±4\sqrt{106}}{36} when ± is plus. Add -52 to 4\sqrt{106}.
x=\frac{\sqrt{106}-13}{9}
Divide -52+4\sqrt{106} by 36.
x=\frac{-4\sqrt{106}-52}{36}
Now solve the equation x=\frac{-52±4\sqrt{106}}{36} when ± is minus. Subtract 4\sqrt{106} from -52.
x=\frac{-\sqrt{106}-13}{9}
Divide -52-4\sqrt{106} by 36.
x=\frac{\sqrt{106}-13}{9} x=\frac{-\sqrt{106}-13}{9}
The equation is now solved.
2\left(9x^{2}+24x+16\right)+4\left(x-3\right)=6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+4\right)^{2}.
18x^{2}+48x+32+4\left(x-3\right)=6
Use the distributive property to multiply 2 by 9x^{2}+24x+16.
18x^{2}+48x+32+4x-12=6
Use the distributive property to multiply 4 by x-3.
18x^{2}+52x+32-12=6
Combine 48x and 4x to get 52x.
18x^{2}+52x+20=6
Subtract 12 from 32 to get 20.
18x^{2}+52x=6-20
Subtract 20 from both sides.
18x^{2}+52x=-14
Subtract 20 from 6 to get -14.
\frac{18x^{2}+52x}{18}=-\frac{14}{18}
Divide both sides by 18.
x^{2}+\frac{52}{18}x=-\frac{14}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{26}{9}x=-\frac{14}{18}
Reduce the fraction \frac{52}{18} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{26}{9}x=-\frac{7}{9}
Reduce the fraction \frac{-14}{18} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{26}{9}x+\left(\frac{13}{9}\right)^{2}=-\frac{7}{9}+\left(\frac{13}{9}\right)^{2}
Divide \frac{26}{9}, the coefficient of the x term, by 2 to get \frac{13}{9}. Then add the square of \frac{13}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{26}{9}x+\frac{169}{81}=-\frac{7}{9}+\frac{169}{81}
Square \frac{13}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{26}{9}x+\frac{169}{81}=\frac{106}{81}
Add -\frac{7}{9} to \frac{169}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{9}\right)^{2}=\frac{106}{81}
Factor x^{2}+\frac{26}{9}x+\frac{169}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{9}\right)^{2}}=\sqrt{\frac{106}{81}}
Take the square root of both sides of the equation.
x+\frac{13}{9}=\frac{\sqrt{106}}{9} x+\frac{13}{9}=-\frac{\sqrt{106}}{9}
Simplify.
x=\frac{\sqrt{106}-13}{9} x=\frac{-\sqrt{106}-13}{9}
Subtract \frac{13}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}