Evaluate
b+6
Differentiate w.r.t. b
1
Share
Copied to clipboard
\frac{2\times 3}{4}\times 4+b
Express 2\times \frac{3}{4} as a single fraction.
\frac{6}{4}\times 4+b
Multiply 2 and 3 to get 6.
\frac{3}{2}\times 4+b
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{3\times 4}{2}+b
Express \frac{3}{2}\times 4 as a single fraction.
\frac{12}{2}+b
Multiply 3 and 4 to get 12.
6+b
Divide 12 by 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{2\times 3}{4}\times 4+b)
Express 2\times \frac{3}{4} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{6}{4}\times 4+b)
Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{3}{2}\times 4+b)
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{3\times 4}{2}+b)
Express \frac{3}{2}\times 4 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{12}{2}+b)
Multiply 3 and 4 to get 12.
\frac{\mathrm{d}}{\mathrm{d}b}(6+b)
Divide 12 by 2 to get 6.
b^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
b^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}