Solve for x (complex solution)
x=22+\sqrt{11}i\approx 22+3.31662479i
x=-\sqrt{11}i+22\approx 22-3.31662479i
Graph
Share
Copied to clipboard
34-2x=\left(23-x\right)^{2}
Use the distributive property to multiply 2 by 17-x.
34-2x=529-46x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(23-x\right)^{2}.
34-2x-529=-46x+x^{2}
Subtract 529 from both sides.
-495-2x=-46x+x^{2}
Subtract 529 from 34 to get -495.
-495-2x+46x=x^{2}
Add 46x to both sides.
-495+44x=x^{2}
Combine -2x and 46x to get 44x.
-495+44x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+44x-495=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-44±\sqrt{44^{2}-4\left(-1\right)\left(-495\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 44 for b, and -495 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-44±\sqrt{1936-4\left(-1\right)\left(-495\right)}}{2\left(-1\right)}
Square 44.
x=\frac{-44±\sqrt{1936+4\left(-495\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-44±\sqrt{1936-1980}}{2\left(-1\right)}
Multiply 4 times -495.
x=\frac{-44±\sqrt{-44}}{2\left(-1\right)}
Add 1936 to -1980.
x=\frac{-44±2\sqrt{11}i}{2\left(-1\right)}
Take the square root of -44.
x=\frac{-44±2\sqrt{11}i}{-2}
Multiply 2 times -1.
x=\frac{-44+2\sqrt{11}i}{-2}
Now solve the equation x=\frac{-44±2\sqrt{11}i}{-2} when ± is plus. Add -44 to 2i\sqrt{11}.
x=-\sqrt{11}i+22
Divide -44+2i\sqrt{11} by -2.
x=\frac{-2\sqrt{11}i-44}{-2}
Now solve the equation x=\frac{-44±2\sqrt{11}i}{-2} when ± is minus. Subtract 2i\sqrt{11} from -44.
x=22+\sqrt{11}i
Divide -44-2i\sqrt{11} by -2.
x=-\sqrt{11}i+22 x=22+\sqrt{11}i
The equation is now solved.
34-2x=\left(23-x\right)^{2}
Use the distributive property to multiply 2 by 17-x.
34-2x=529-46x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(23-x\right)^{2}.
34-2x+46x=529+x^{2}
Add 46x to both sides.
34+44x=529+x^{2}
Combine -2x and 46x to get 44x.
34+44x-x^{2}=529
Subtract x^{2} from both sides.
44x-x^{2}=529-34
Subtract 34 from both sides.
44x-x^{2}=495
Subtract 34 from 529 to get 495.
-x^{2}+44x=495
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+44x}{-1}=\frac{495}{-1}
Divide both sides by -1.
x^{2}+\frac{44}{-1}x=\frac{495}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-44x=\frac{495}{-1}
Divide 44 by -1.
x^{2}-44x=-495
Divide 495 by -1.
x^{2}-44x+\left(-22\right)^{2}=-495+\left(-22\right)^{2}
Divide -44, the coefficient of the x term, by 2 to get -22. Then add the square of -22 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-44x+484=-495+484
Square -22.
x^{2}-44x+484=-11
Add -495 to 484.
\left(x-22\right)^{2}=-11
Factor x^{2}-44x+484. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-22\right)^{2}}=\sqrt{-11}
Take the square root of both sides of the equation.
x-22=\sqrt{11}i x-22=-\sqrt{11}i
Simplify.
x=22+\sqrt{11}i x=-\sqrt{11}i+22
Add 22 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}