2 ( 1 + y ) d x - ( 1 + x ) d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&y=-\frac{2x}{x-1}\text{ and }x\neq 1\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{y}{y+2}\text{, }&y\neq -2\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&y=-\frac{2x}{x-1}\text{ and }x\neq 1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{y}{y+2}\text{, }&y\neq -2\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(2+2y\right)dx-\left(1+x\right)dy=0
Use the distributive property to multiply 2 by 1+y.
\left(2d+2yd\right)x-\left(1+x\right)dy=0
Use the distributive property to multiply 2+2y by d.
2dx+2ydx-\left(1+x\right)dy=0
Use the distributive property to multiply 2d+2yd by x.
2dx+2ydx-\left(d+xd\right)y=0
Use the distributive property to multiply 1+x by d.
2dx+2ydx-\left(dy+xdy\right)=0
Use the distributive property to multiply d+xd by y.
2dx+2ydx-dy-xdy=0
To find the opposite of dy+xdy, find the opposite of each term.
2dx+ydx-dy=0
Combine 2ydx and -xdy to get ydx.
\left(2x+yx-y\right)d=0
Combine all terms containing d.
\left(xy+2x-y\right)d=0
The equation is in standard form.
d=0
Divide 0 by 2x+yx-y.
\left(2+2y\right)dx-\left(1+x\right)dy=0
Use the distributive property to multiply 2 by 1+y.
\left(2d+2yd\right)x-\left(1+x\right)dy=0
Use the distributive property to multiply 2+2y by d.
2dx+2ydx-\left(1+x\right)dy=0
Use the distributive property to multiply 2d+2yd by x.
2dx+2ydx-\left(d+xd\right)y=0
Use the distributive property to multiply 1+x by d.
2dx+2ydx-\left(dy+xdy\right)=0
Use the distributive property to multiply d+xd by y.
2dx+2ydx-dy-xdy=0
To find the opposite of dy+xdy, find the opposite of each term.
2dx+ydx-dy=0
Combine 2ydx and -xdy to get ydx.
2dx+ydx=dy
Add dy to both sides. Anything plus zero gives itself.
\left(2d+yd\right)x=dy
Combine all terms containing x.
\left(dy+2d\right)x=dy
The equation is in standard form.
\frac{\left(dy+2d\right)x}{dy+2d}=\frac{dy}{dy+2d}
Divide both sides by 2d+yd.
x=\frac{dy}{dy+2d}
Dividing by 2d+yd undoes the multiplication by 2d+yd.
x=\frac{y}{y+2}
Divide dy by 2d+yd.
\left(2+2y\right)dx-\left(1+x\right)dy=0
Use the distributive property to multiply 2 by 1+y.
\left(2d+2yd\right)x-\left(1+x\right)dy=0
Use the distributive property to multiply 2+2y by d.
2dx+2ydx-\left(1+x\right)dy=0
Use the distributive property to multiply 2d+2yd by x.
2dx+2ydx-\left(d+xd\right)y=0
Use the distributive property to multiply 1+x by d.
2dx+2ydx-\left(dy+xdy\right)=0
Use the distributive property to multiply d+xd by y.
2dx+2ydx-dy-xdy=0
To find the opposite of dy+xdy, find the opposite of each term.
2dx+ydx-dy=0
Combine 2ydx and -xdy to get ydx.
\left(2x+yx-y\right)d=0
Combine all terms containing d.
\left(xy+2x-y\right)d=0
The equation is in standard form.
d=0
Divide 0 by 2x+yx-y.
\left(2+2y\right)dx-\left(1+x\right)dy=0
Use the distributive property to multiply 2 by 1+y.
\left(2d+2yd\right)x-\left(1+x\right)dy=0
Use the distributive property to multiply 2+2y by d.
2dx+2ydx-\left(1+x\right)dy=0
Use the distributive property to multiply 2d+2yd by x.
2dx+2ydx-\left(d+xd\right)y=0
Use the distributive property to multiply 1+x by d.
2dx+2ydx-\left(dy+xdy\right)=0
Use the distributive property to multiply d+xd by y.
2dx+2ydx-dy-xdy=0
To find the opposite of dy+xdy, find the opposite of each term.
2dx+ydx-dy=0
Combine 2ydx and -xdy to get ydx.
2dx+ydx=dy
Add dy to both sides. Anything plus zero gives itself.
\left(2d+yd\right)x=dy
Combine all terms containing x.
\left(dy+2d\right)x=dy
The equation is in standard form.
\frac{\left(dy+2d\right)x}{dy+2d}=\frac{dy}{dy+2d}
Divide both sides by 2d+yd.
x=\frac{dy}{dy+2d}
Dividing by 2d+yd undoes the multiplication by 2d+yd.
x=\frac{y}{y+2}
Divide dy by 2d+yd.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}