Solve for k
k=\frac{22}{x}
x\neq 0
Solve for x
x=\frac{22}{k}
k\neq 0
Graph
Share
Copied to clipboard
2\times 9-kx+4=0
Calculate -3 to the power of 2 and get 9.
18-kx+4=0
Multiply 2 and 9 to get 18.
22-kx=0
Add 18 and 4 to get 22.
-kx=-22
Subtract 22 from both sides. Anything subtracted from zero gives its negation.
\left(-x\right)k=-22
The equation is in standard form.
\frac{\left(-x\right)k}{-x}=-\frac{22}{-x}
Divide both sides by -x.
k=-\frac{22}{-x}
Dividing by -x undoes the multiplication by -x.
k=\frac{22}{x}
Divide -22 by -x.
2\times 9-kx+4=0
Calculate -3 to the power of 2 and get 9.
18-kx+4=0
Multiply 2 and 9 to get 18.
22-kx=0
Add 18 and 4 to get 22.
-kx=-22
Subtract 22 from both sides. Anything subtracted from zero gives its negation.
\left(-k\right)x=-22
The equation is in standard form.
\frac{\left(-k\right)x}{-k}=-\frac{22}{-k}
Divide both sides by -k.
x=-\frac{22}{-k}
Dividing by -k undoes the multiplication by -k.
x=\frac{22}{k}
Divide -22 by -k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}