Evaluate
-65536y^{73}x^{159}
Expand
-65536y^{73}x^{159}
Share
Copied to clipboard
2\left(\left(-\left(x^{3}\right)^{2}\right)y^{7}\right)^{4}\left(-\left(-2\left(\left(-x^{3}\right)y\right)^{3}\right)^{5}\right)^{3}
Calculate -x^{3} to the power of 2 and get \left(x^{3}\right)^{2}.
2\left(-\left(x^{3}\right)^{2}\right)^{4}\left(y^{7}\right)^{4}\left(-\left(-2\left(\left(-x^{3}\right)y\right)^{3}\right)^{5}\right)^{3}
Expand \left(\left(-\left(x^{3}\right)^{2}\right)y^{7}\right)^{4}.
2\left(-x^{6}\right)^{4}\left(y^{7}\right)^{4}\left(-\left(-2\left(\left(-x^{3}\right)y\right)^{3}\right)^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\left(\left(-x^{3}\right)y\right)^{3}\right)^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 7 and 4 to get 28.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\left(-x^{3}\right)^{3}y^{3}\right)^{5}\right)^{3}
Expand \left(\left(-x^{3}\right)y\right)^{3}.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\right)^{5}\left(\left(-x^{3}\right)^{3}\right)^{5}\left(y^{3}\right)^{5}\right)^{3}
Expand \left(-2\left(-x^{3}\right)^{3}y^{3}\right)^{5}.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\right)^{5}\left(-x^{3}\right)^{15}\left(y^{3}\right)^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\right)^{5}\left(-x^{3}\right)^{15}y^{15}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-32\left(-x^{3}\right)^{15}y^{15}\right)\right)^{3}
Calculate -2 to the power of 5 and get -32.
2\left(-x^{6}\right)^{4}y^{28}\times \left(32\left(-x^{3}\right)^{15}y^{15}\right)^{3}
The opposite of -32\left(-x^{3}\right)^{15}y^{15} is 32\left(-x^{3}\right)^{15}y^{15}.
2\left(-x^{6}\right)^{4}y^{28}\times 32^{3}\left(\left(-x^{3}\right)^{15}\right)^{3}\left(y^{15}\right)^{3}
Expand \left(32\left(-x^{3}\right)^{15}y^{15}\right)^{3}.
2\left(-x^{6}\right)^{4}y^{28}\times 32^{3}\left(-x^{3}\right)^{45}\left(y^{15}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 15 and 3 to get 45.
2\left(-x^{6}\right)^{4}y^{28}\times 32^{3}\left(-x^{3}\right)^{45}y^{45}
To raise a power to another power, multiply the exponents. Multiply 15 and 3 to get 45.
2\left(-x^{6}\right)^{4}y^{28}\times 32768\left(-x^{3}\right)^{45}y^{45}
Calculate 32 to the power of 3 and get 32768.
65536\left(-x^{6}\right)^{4}y^{28}\left(-x^{3}\right)^{45}y^{45}
Multiply 2 and 32768 to get 65536.
65536\left(-x^{6}\right)^{4}y^{73}\left(-x^{3}\right)^{45}
To multiply powers of the same base, add their exponents. Add 28 and 45 to get 73.
65536\left(-1\right)^{4}\left(x^{6}\right)^{4}y^{73}\left(-x^{3}\right)^{45}
Expand \left(-x^{6}\right)^{4}.
65536\left(-1\right)^{4}x^{24}y^{73}\left(-x^{3}\right)^{45}
To raise a power to another power, multiply the exponents. Multiply 6 and 4 to get 24.
65536\times 1x^{24}y^{73}\left(-x^{3}\right)^{45}
Calculate -1 to the power of 4 and get 1.
65536x^{24}y^{73}\left(-x^{3}\right)^{45}
Multiply 65536 and 1 to get 65536.
65536x^{24}y^{73}\left(-1\right)^{45}\left(x^{3}\right)^{45}
Expand \left(-x^{3}\right)^{45}.
65536x^{24}y^{73}\left(-1\right)^{45}x^{135}
To raise a power to another power, multiply the exponents. Multiply 3 and 45 to get 135.
65536x^{24}y^{73}\left(-1\right)x^{135}
Calculate -1 to the power of 45 and get -1.
-65536x^{24}y^{73}x^{135}
Multiply 65536 and -1 to get -65536.
-65536x^{159}y^{73}
To multiply powers of the same base, add their exponents. Add 24 and 135 to get 159.
2\left(\left(-\left(x^{3}\right)^{2}\right)y^{7}\right)^{4}\left(-\left(-2\left(\left(-x^{3}\right)y\right)^{3}\right)^{5}\right)^{3}
Calculate -x^{3} to the power of 2 and get \left(x^{3}\right)^{2}.
2\left(-\left(x^{3}\right)^{2}\right)^{4}\left(y^{7}\right)^{4}\left(-\left(-2\left(\left(-x^{3}\right)y\right)^{3}\right)^{5}\right)^{3}
Expand \left(\left(-\left(x^{3}\right)^{2}\right)y^{7}\right)^{4}.
2\left(-x^{6}\right)^{4}\left(y^{7}\right)^{4}\left(-\left(-2\left(\left(-x^{3}\right)y\right)^{3}\right)^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\left(\left(-x^{3}\right)y\right)^{3}\right)^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 7 and 4 to get 28.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\left(-x^{3}\right)^{3}y^{3}\right)^{5}\right)^{3}
Expand \left(\left(-x^{3}\right)y\right)^{3}.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\right)^{5}\left(\left(-x^{3}\right)^{3}\right)^{5}\left(y^{3}\right)^{5}\right)^{3}
Expand \left(-2\left(-x^{3}\right)^{3}y^{3}\right)^{5}.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\right)^{5}\left(-x^{3}\right)^{15}\left(y^{3}\right)^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-2\right)^{5}\left(-x^{3}\right)^{15}y^{15}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
2\left(-x^{6}\right)^{4}y^{28}\left(-\left(-32\left(-x^{3}\right)^{15}y^{15}\right)\right)^{3}
Calculate -2 to the power of 5 and get -32.
2\left(-x^{6}\right)^{4}y^{28}\times \left(32\left(-x^{3}\right)^{15}y^{15}\right)^{3}
The opposite of -32\left(-x^{3}\right)^{15}y^{15} is 32\left(-x^{3}\right)^{15}y^{15}.
2\left(-x^{6}\right)^{4}y^{28}\times 32^{3}\left(\left(-x^{3}\right)^{15}\right)^{3}\left(y^{15}\right)^{3}
Expand \left(32\left(-x^{3}\right)^{15}y^{15}\right)^{3}.
2\left(-x^{6}\right)^{4}y^{28}\times 32^{3}\left(-x^{3}\right)^{45}\left(y^{15}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 15 and 3 to get 45.
2\left(-x^{6}\right)^{4}y^{28}\times 32^{3}\left(-x^{3}\right)^{45}y^{45}
To raise a power to another power, multiply the exponents. Multiply 15 and 3 to get 45.
2\left(-x^{6}\right)^{4}y^{28}\times 32768\left(-x^{3}\right)^{45}y^{45}
Calculate 32 to the power of 3 and get 32768.
65536\left(-x^{6}\right)^{4}y^{28}\left(-x^{3}\right)^{45}y^{45}
Multiply 2 and 32768 to get 65536.
65536\left(-x^{6}\right)^{4}y^{73}\left(-x^{3}\right)^{45}
To multiply powers of the same base, add their exponents. Add 28 and 45 to get 73.
65536\left(-1\right)^{4}\left(x^{6}\right)^{4}y^{73}\left(-x^{3}\right)^{45}
Expand \left(-x^{6}\right)^{4}.
65536\left(-1\right)^{4}x^{24}y^{73}\left(-x^{3}\right)^{45}
To raise a power to another power, multiply the exponents. Multiply 6 and 4 to get 24.
65536\times 1x^{24}y^{73}\left(-x^{3}\right)^{45}
Calculate -1 to the power of 4 and get 1.
65536x^{24}y^{73}\left(-x^{3}\right)^{45}
Multiply 65536 and 1 to get 65536.
65536x^{24}y^{73}\left(-1\right)^{45}\left(x^{3}\right)^{45}
Expand \left(-x^{3}\right)^{45}.
65536x^{24}y^{73}\left(-1\right)^{45}x^{135}
To raise a power to another power, multiply the exponents. Multiply 3 and 45 to get 135.
65536x^{24}y^{73}\left(-1\right)x^{135}
Calculate -1 to the power of 45 and get -1.
-65536x^{24}y^{73}x^{135}
Multiply 65536 and -1 to get -65536.
-65536x^{159}y^{73}
To multiply powers of the same base, add their exponents. Add 24 and 135 to get 159.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}