Evaluate
\frac{2m-1}{5}
Expand
\frac{2m-1}{5}
Quiz
Polynomial
5 problems similar to:
2 ( \frac { 1 } { 5 } m - \frac { 2 } { 5 } ) + \frac { 3 } { 5 }
Share
Copied to clipboard
2\times \frac{1}{5}m+2\left(-\frac{2}{5}\right)+\frac{3}{5}
Use the distributive property to multiply 2 by \frac{1}{5}m-\frac{2}{5}.
\frac{2}{5}m+2\left(-\frac{2}{5}\right)+\frac{3}{5}
Multiply 2 and \frac{1}{5} to get \frac{2}{5}.
\frac{2}{5}m+\frac{2\left(-2\right)}{5}+\frac{3}{5}
Express 2\left(-\frac{2}{5}\right) as a single fraction.
\frac{2}{5}m+\frac{-4}{5}+\frac{3}{5}
Multiply 2 and -2 to get -4.
\frac{2}{5}m-\frac{4}{5}+\frac{3}{5}
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
\frac{2}{5}m+\frac{-4+3}{5}
Since -\frac{4}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
\frac{2}{5}m-\frac{1}{5}
Add -4 and 3 to get -1.
2\times \frac{1}{5}m+2\left(-\frac{2}{5}\right)+\frac{3}{5}
Use the distributive property to multiply 2 by \frac{1}{5}m-\frac{2}{5}.
\frac{2}{5}m+2\left(-\frac{2}{5}\right)+\frac{3}{5}
Multiply 2 and \frac{1}{5} to get \frac{2}{5}.
\frac{2}{5}m+\frac{2\left(-2\right)}{5}+\frac{3}{5}
Express 2\left(-\frac{2}{5}\right) as a single fraction.
\frac{2}{5}m+\frac{-4}{5}+\frac{3}{5}
Multiply 2 and -2 to get -4.
\frac{2}{5}m-\frac{4}{5}+\frac{3}{5}
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
\frac{2}{5}m+\frac{-4+3}{5}
Since -\frac{4}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
\frac{2}{5}m-\frac{1}{5}
Add -4 and 3 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}