Factor
2\left(y-\left(-\sqrt{94}-7\right)\right)\left(y-\left(\sqrt{94}-7\right)\right)
Evaluate
2\left(y^{2}+14y-45\right)
Graph
Share
Copied to clipboard
2y^{2}+28y-90=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-28±\sqrt{28^{2}-4\times 2\left(-90\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-28±\sqrt{784-4\times 2\left(-90\right)}}{2\times 2}
Square 28.
y=\frac{-28±\sqrt{784-8\left(-90\right)}}{2\times 2}
Multiply -4 times 2.
y=\frac{-28±\sqrt{784+720}}{2\times 2}
Multiply -8 times -90.
y=\frac{-28±\sqrt{1504}}{2\times 2}
Add 784 to 720.
y=\frac{-28±4\sqrt{94}}{2\times 2}
Take the square root of 1504.
y=\frac{-28±4\sqrt{94}}{4}
Multiply 2 times 2.
y=\frac{4\sqrt{94}-28}{4}
Now solve the equation y=\frac{-28±4\sqrt{94}}{4} when ± is plus. Add -28 to 4\sqrt{94}.
y=\sqrt{94}-7
Divide -28+4\sqrt{94} by 4.
y=\frac{-4\sqrt{94}-28}{4}
Now solve the equation y=\frac{-28±4\sqrt{94}}{4} when ± is minus. Subtract 4\sqrt{94} from -28.
y=-\sqrt{94}-7
Divide -28-4\sqrt{94} by 4.
2y^{2}+28y-90=2\left(y-\left(\sqrt{94}-7\right)\right)\left(y-\left(-\sqrt{94}-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -7+\sqrt{94} for x_{1} and -7-\sqrt{94} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}