Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{4}-x^{2}-1=0
To factor the expression, solve the equation where it equals to 0.
±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 2. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
2x^{3}+2x^{2}+x+1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 2x^{4}-x^{2}-1 by x-1 to get 2x^{3}+2x^{2}+x+1. To factor the result, solve the equation where it equals to 0.
±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 1 and q divides the leading coefficient 2. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
2x^{2}+1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 2x^{3}+2x^{2}+x+1 by x+1 to get 2x^{2}+1. To factor the result, solve the equation where it equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 1}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 0 for b, and 1 for c in the quadratic formula.
x=\frac{0±\sqrt{-8}}{4}
Do the calculations.
2x^{2}+1
Polynomial 2x^{2}+1 is not factored since it does not have any rational roots.
\left(x-1\right)\left(x+1\right)\left(2x^{2}+1\right)
Rewrite the factored expression using the obtained roots.