Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-5\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-5\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-1\right)±\sqrt{1+40}}{2\times 2}
Multiply -8 times -5.
x=\frac{-\left(-1\right)±\sqrt{41}}{2\times 2}
Add 1 to 40.
x=\frac{1±\sqrt{41}}{2\times 2}
The opposite of -1 is 1.
x=\frac{1±\sqrt{41}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{41}+1}{4}
Now solve the equation x=\frac{1±\sqrt{41}}{4} when ± is plus. Add 1 to \sqrt{41}.
x=\frac{1-\sqrt{41}}{4}
Now solve the equation x=\frac{1±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from 1.
2x^{2}-x-5=2\left(x-\frac{\sqrt{41}+1}{4}\right)\left(x-\frac{1-\sqrt{41}}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{41}}{4} for x_{1} and \frac{1-\sqrt{41}}{4} for x_{2}.