Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-1 ab=2\left(-3\right)=-6
Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-3 b=2
The solution is the pair that gives sum -1.
\left(2x^{2}-3x\right)+\left(2x-3\right)
Rewrite 2x^{2}-x-3 as \left(2x^{2}-3x\right)+\left(2x-3\right).
x\left(2x-3\right)+2x-3
Factor out x in 2x^{2}-3x.
\left(2x-3\right)\left(x+1\right)
Factor out common term 2x-3 by using distributive property.
2x^{2}-x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
Multiply -8 times -3.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
Add 1 to 24.
x=\frac{-\left(-1\right)±5}{2\times 2}
Take the square root of 25.
x=\frac{1±5}{2\times 2}
The opposite of -1 is 1.
x=\frac{1±5}{4}
Multiply 2 times 2.
x=\frac{6}{4}
Now solve the equation x=\frac{1±5}{4} when ± is plus. Add 1 to 5.
x=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{4}{4}
Now solve the equation x=\frac{1±5}{4} when ± is minus. Subtract 5 from 1.
x=-1
Divide -4 by 4.
2x^{2}-x-3=2\left(x-\frac{3}{2}\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -1 for x_{2}.
2x^{2}-x-3=2\left(x-\frac{3}{2}\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2x^{2}-x-3=2\times \frac{2x-3}{2}\left(x+1\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
2x^{2}-x-3=\left(2x-3\right)\left(x+1\right)
Cancel out 2, the greatest common factor in 2 and 2.