Factor
2\left(x-3\right)\left(x-1\right)
Evaluate
2\left(x-3\right)\left(x-1\right)
Graph
Share
Copied to clipboard
2\left(x^{2}-4x+3\right)
Factor out 2.
a+b=-4 ab=1\times 3=3
Consider x^{2}-4x+3. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
a=-3 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x^{2}-3x\right)+\left(-x+3\right)
Rewrite x^{2}-4x+3 as \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Factor out x in the first and -1 in the second group.
\left(x-3\right)\left(x-1\right)
Factor out common term x-3 by using distributive property.
2\left(x-3\right)\left(x-1\right)
Rewrite the complete factored expression.
2x^{2}-8x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 6}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 6}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 6}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 2}
Multiply -8 times 6.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 2}
Add 64 to -48.
x=\frac{-\left(-8\right)±4}{2\times 2}
Take the square root of 16.
x=\frac{8±4}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±4}{4}
Multiply 2 times 2.
x=\frac{12}{4}
Now solve the equation x=\frac{8±4}{4} when ± is plus. Add 8 to 4.
x=3
Divide 12 by 4.
x=\frac{4}{4}
Now solve the equation x=\frac{8±4}{4} when ± is minus. Subtract 4 from 8.
x=1
Divide 4 by 4.
2x^{2}-8x+6=2\left(x-3\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 1 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}