Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-10x+3-17x^{2}
Combine -6x and -4x to get -10x.
-15x^{2}-10x+3
Combine 2x^{2} and -17x^{2} to get -15x^{2}.
factor(2x^{2}-10x+3-17x^{2})
Combine -6x and -4x to get -10x.
factor(-15x^{2}-10x+3)
Combine 2x^{2} and -17x^{2} to get -15x^{2}.
-15x^{2}-10x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-15\right)\times 3}}{2\left(-15\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-15\right)\times 3}}{2\left(-15\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+60\times 3}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-\left(-10\right)±\sqrt{100+180}}{2\left(-15\right)}
Multiply 60 times 3.
x=\frac{-\left(-10\right)±\sqrt{280}}{2\left(-15\right)}
Add 100 to 180.
x=\frac{-\left(-10\right)±2\sqrt{70}}{2\left(-15\right)}
Take the square root of 280.
x=\frac{10±2\sqrt{70}}{2\left(-15\right)}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{70}}{-30}
Multiply 2 times -15.
x=\frac{2\sqrt{70}+10}{-30}
Now solve the equation x=\frac{10±2\sqrt{70}}{-30} when ± is plus. Add 10 to 2\sqrt{70}.
x=-\frac{\sqrt{70}}{15}-\frac{1}{3}
Divide 10+2\sqrt{70} by -30.
x=\frac{10-2\sqrt{70}}{-30}
Now solve the equation x=\frac{10±2\sqrt{70}}{-30} when ± is minus. Subtract 2\sqrt{70} from 10.
x=\frac{\sqrt{70}}{15}-\frac{1}{3}
Divide 10-2\sqrt{70} by -30.
-15x^{2}-10x+3=-15\left(x-\left(-\frac{\sqrt{70}}{15}-\frac{1}{3}\right)\right)\left(x-\left(\frac{\sqrt{70}}{15}-\frac{1}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{3}-\frac{\sqrt{70}}{15} for x_{1} and -\frac{1}{3}+\frac{\sqrt{70}}{15} for x_{2}.