Solve for x (complex solution)
x=\frac{-\sqrt{11}i-1}{6}\approx -0.166666667-0.552770798i
x=\frac{-1+\sqrt{11}i}{6}\approx -0.166666667+0.552770798i
Graph
Share
Copied to clipboard
2x^{2}-4x-5x^{2}=-3x+1
Subtract 5x^{2} from both sides.
-3x^{2}-4x=-3x+1
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-4x+3x=1
Add 3x to both sides.
-3x^{2}-x=1
Combine -4x and 3x to get -x.
-3x^{2}-x-1=0
Subtract 1 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+12\left(-1\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-1\right)±\sqrt{1-12}}{2\left(-3\right)}
Multiply 12 times -1.
x=\frac{-\left(-1\right)±\sqrt{-11}}{2\left(-3\right)}
Add 1 to -12.
x=\frac{-\left(-1\right)±\sqrt{11}i}{2\left(-3\right)}
Take the square root of -11.
x=\frac{1±\sqrt{11}i}{2\left(-3\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{11}i}{-6}
Multiply 2 times -3.
x=\frac{1+\sqrt{11}i}{-6}
Now solve the equation x=\frac{1±\sqrt{11}i}{-6} when ± is plus. Add 1 to i\sqrt{11}.
x=\frac{-\sqrt{11}i-1}{6}
Divide 1+i\sqrt{11} by -6.
x=\frac{-\sqrt{11}i+1}{-6}
Now solve the equation x=\frac{1±\sqrt{11}i}{-6} when ± is minus. Subtract i\sqrt{11} from 1.
x=\frac{-1+\sqrt{11}i}{6}
Divide 1-i\sqrt{11} by -6.
x=\frac{-\sqrt{11}i-1}{6} x=\frac{-1+\sqrt{11}i}{6}
The equation is now solved.
2x^{2}-4x-5x^{2}=-3x+1
Subtract 5x^{2} from both sides.
-3x^{2}-4x=-3x+1
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-4x+3x=1
Add 3x to both sides.
-3x^{2}-x=1
Combine -4x and 3x to get -x.
\frac{-3x^{2}-x}{-3}=\frac{1}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{1}{-3}\right)x=\frac{1}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{1}{3}x=\frac{1}{-3}
Divide -1 by -3.
x^{2}+\frac{1}{3}x=-\frac{1}{3}
Divide 1 by -3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{1}{3}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{1}{3}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{11}{36}
Add -\frac{1}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{6}\right)^{2}=-\frac{11}{36}
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{11}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{6}=\frac{\sqrt{11}i}{6} x+\frac{1}{6}=-\frac{\sqrt{11}i}{6}
Simplify.
x=\frac{-1+\sqrt{11}i}{6} x=\frac{-\sqrt{11}i-1}{6}
Subtract \frac{1}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}