Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-4x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 7}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 7}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\times 7}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16-56}}{2\times 2}
Multiply -8 times 7.
x=\frac{-\left(-4\right)±\sqrt{-40}}{2\times 2}
Add 16 to -56.
x=\frac{-\left(-4\right)±2\sqrt{10}i}{2\times 2}
Take the square root of -40.
x=\frac{4±2\sqrt{10}i}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{10}i}{4}
Multiply 2 times 2.
x=\frac{4+2\sqrt{10}i}{4}
Now solve the equation x=\frac{4±2\sqrt{10}i}{4} when ± is plus. Add 4 to 2i\sqrt{10}.
x=\frac{\sqrt{10}i}{2}+1
Divide 4+2i\sqrt{10} by 4.
x=\frac{-2\sqrt{10}i+4}{4}
Now solve the equation x=\frac{4±2\sqrt{10}i}{4} when ± is minus. Subtract 2i\sqrt{10} from 4.
x=-\frac{\sqrt{10}i}{2}+1
Divide 4-2i\sqrt{10} by 4.
x=\frac{\sqrt{10}i}{2}+1 x=-\frac{\sqrt{10}i}{2}+1
The equation is now solved.
2x^{2}-4x+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-4x+7-7=-7
Subtract 7 from both sides of the equation.
2x^{2}-4x=-7
Subtracting 7 from itself leaves 0.
\frac{2x^{2}-4x}{2}=-\frac{7}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{4}{2}\right)x=-\frac{7}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-2x=-\frac{7}{2}
Divide -4 by 2.
x^{2}-2x+1=-\frac{7}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-\frac{5}{2}
Add -\frac{7}{2} to 1.
\left(x-1\right)^{2}=-\frac{5}{2}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{5}{2}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{10}i}{2} x-1=-\frac{\sqrt{10}i}{2}
Simplify.
x=\frac{\sqrt{10}i}{2}+1 x=-\frac{\sqrt{10}i}{2}+1
Add 1 to both sides of the equation.