Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-298x+6000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-298\right)±\sqrt{\left(-298\right)^{2}-4\times 2\times 6000}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -298 for b, and 6000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-298\right)±\sqrt{88804-4\times 2\times 6000}}{2\times 2}
Square -298.
x=\frac{-\left(-298\right)±\sqrt{88804-8\times 6000}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-298\right)±\sqrt{88804-48000}}{2\times 2}
Multiply -8 times 6000.
x=\frac{-\left(-298\right)±\sqrt{40804}}{2\times 2}
Add 88804 to -48000.
x=\frac{-\left(-298\right)±202}{2\times 2}
Take the square root of 40804.
x=\frac{298±202}{2\times 2}
The opposite of -298 is 298.
x=\frac{298±202}{4}
Multiply 2 times 2.
x=\frac{500}{4}
Now solve the equation x=\frac{298±202}{4} when ± is plus. Add 298 to 202.
x=125
Divide 500 by 4.
x=\frac{96}{4}
Now solve the equation x=\frac{298±202}{4} when ± is minus. Subtract 202 from 298.
x=24
Divide 96 by 4.
x=125 x=24
The equation is now solved.
2x^{2}-298x+6000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-298x+6000-6000=-6000
Subtract 6000 from both sides of the equation.
2x^{2}-298x=-6000
Subtracting 6000 from itself leaves 0.
\frac{2x^{2}-298x}{2}=-\frac{6000}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{298}{2}\right)x=-\frac{6000}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-149x=-\frac{6000}{2}
Divide -298 by 2.
x^{2}-149x=-3000
Divide -6000 by 2.
x^{2}-149x+\left(-\frac{149}{2}\right)^{2}=-3000+\left(-\frac{149}{2}\right)^{2}
Divide -149, the coefficient of the x term, by 2 to get -\frac{149}{2}. Then add the square of -\frac{149}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-149x+\frac{22201}{4}=-3000+\frac{22201}{4}
Square -\frac{149}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-149x+\frac{22201}{4}=\frac{10201}{4}
Add -3000 to \frac{22201}{4}.
\left(x-\frac{149}{2}\right)^{2}=\frac{10201}{4}
Factor x^{2}-149x+\frac{22201}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{149}{2}\right)^{2}}=\sqrt{\frac{10201}{4}}
Take the square root of both sides of the equation.
x-\frac{149}{2}=\frac{101}{2} x-\frac{149}{2}=-\frac{101}{2}
Simplify.
x=125 x=24
Add \frac{149}{2} to both sides of the equation.