Solve for x
x=\frac{\sqrt{2630}}{20}+6.5\approx 9.064176281
x=-\frac{\sqrt{2630}}{20}+6.5\approx 3.935823719
Graph
Share
Copied to clipboard
2x^{2}-26x+71.35=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 2\times 71.35}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -26 for b, and 71.35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 2\times 71.35}}{2\times 2}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-8\times 71.35}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-26\right)±\sqrt{676-570.8}}{2\times 2}
Multiply -8 times 71.35.
x=\frac{-\left(-26\right)±\sqrt{105.2}}{2\times 2}
Add 676 to -570.8.
x=\frac{-\left(-26\right)±\frac{\sqrt{2630}}{5}}{2\times 2}
Take the square root of 105.2.
x=\frac{26±\frac{\sqrt{2630}}{5}}{2\times 2}
The opposite of -26 is 26.
x=\frac{26±\frac{\sqrt{2630}}{5}}{4}
Multiply 2 times 2.
x=\frac{\frac{\sqrt{2630}}{5}+26}{4}
Now solve the equation x=\frac{26±\frac{\sqrt{2630}}{5}}{4} when ± is plus. Add 26 to \frac{\sqrt{2630}}{5}.
x=\frac{\sqrt{2630}}{20}+\frac{13}{2}
Divide 26+\frac{\sqrt{2630}}{5} by 4.
x=\frac{-\frac{\sqrt{2630}}{5}+26}{4}
Now solve the equation x=\frac{26±\frac{\sqrt{2630}}{5}}{4} when ± is minus. Subtract \frac{\sqrt{2630}}{5} from 26.
x=-\frac{\sqrt{2630}}{20}+\frac{13}{2}
Divide 26-\frac{\sqrt{2630}}{5} by 4.
x=\frac{\sqrt{2630}}{20}+\frac{13}{2} x=-\frac{\sqrt{2630}}{20}+\frac{13}{2}
The equation is now solved.
2x^{2}-26x+71.35=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-26x+71.35-71.35=-71.35
Subtract 71.35 from both sides of the equation.
2x^{2}-26x=-71.35
Subtracting 71.35 from itself leaves 0.
\frac{2x^{2}-26x}{2}=-\frac{71.35}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{26}{2}\right)x=-\frac{71.35}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-13x=-\frac{71.35}{2}
Divide -26 by 2.
x^{2}-13x=-35.675
Divide -71.35 by 2.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-35.675+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=-35.675+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=\frac{263}{40}
Add -35.675 to \frac{169}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{2}\right)^{2}=\frac{263}{40}
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{263}{40}}
Take the square root of both sides of the equation.
x-\frac{13}{2}=\frac{\sqrt{2630}}{20} x-\frac{13}{2}=-\frac{\sqrt{2630}}{20}
Simplify.
x=\frac{\sqrt{2630}}{20}+\frac{13}{2} x=-\frac{\sqrt{2630}}{20}+\frac{13}{2}
Add \frac{13}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}