Solve for x
x=-2
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Share
Copied to clipboard
2x^{2}-3x-14=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-3 ab=2\left(-14\right)=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-14. To find a and b, set up a system to be solved.
1,-28 2,-14 4,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -28.
1-28=-27 2-14=-12 4-7=-3
Calculate the sum for each pair.
a=-7 b=4
The solution is the pair that gives sum -3.
\left(2x^{2}-7x\right)+\left(4x-14\right)
Rewrite 2x^{2}-3x-14 as \left(2x^{2}-7x\right)+\left(4x-14\right).
x\left(2x-7\right)+2\left(2x-7\right)
Factor out x in the first and 2 in the second group.
\left(2x-7\right)\left(x+2\right)
Factor out common term 2x-7 by using distributive property.
x=\frac{7}{2} x=-2
To find equation solutions, solve 2x-7=0 and x+2=0.
2x^{2}-3x-14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-14\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-14\right)}}{2\times 2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-14\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2\times 2}
Multiply -8 times -14.
x=\frac{-\left(-3\right)±\sqrt{121}}{2\times 2}
Add 9 to 112.
x=\frac{-\left(-3\right)±11}{2\times 2}
Take the square root of 121.
x=\frac{3±11}{2\times 2}
The opposite of -3 is 3.
x=\frac{3±11}{4}
Multiply 2 times 2.
x=\frac{14}{4}
Now solve the equation x=\frac{3±11}{4} when ± is plus. Add 3 to 11.
x=\frac{7}{2}
Reduce the fraction \frac{14}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{8}{4}
Now solve the equation x=\frac{3±11}{4} when ± is minus. Subtract 11 from 3.
x=-2
Divide -8 by 4.
x=\frac{7}{2} x=-2
The equation is now solved.
2x^{2}-3x-14=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-3x-14-\left(-14\right)=-\left(-14\right)
Add 14 to both sides of the equation.
2x^{2}-3x=-\left(-14\right)
Subtracting -14 from itself leaves 0.
2x^{2}-3x=14
Subtract -14 from 0.
\frac{2x^{2}-3x}{2}=\frac{14}{2}
Divide both sides by 2.
x^{2}-\frac{3}{2}x=\frac{14}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{3}{2}x=7
Divide 14 by 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=7+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=7+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{121}{16}
Add 7 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{121}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{11}{4} x-\frac{3}{4}=-\frac{11}{4}
Simplify.
x=\frac{7}{2} x=-2
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}