Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}=14
Add 14 to both sides. Anything plus zero gives itself.
x^{2}=\frac{14}{2}
Divide both sides by 2.
x^{2}=7
Divide 14 by 2 to get 7.
x=\sqrt{7} x=-\sqrt{7}
Take the square root of both sides of the equation.
2x^{2}-14=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-14\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-14\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-14\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{112}}{2\times 2}
Multiply -8 times -14.
x=\frac{0±4\sqrt{7}}{2\times 2}
Take the square root of 112.
x=\frac{0±4\sqrt{7}}{4}
Multiply 2 times 2.
x=\sqrt{7}
Now solve the equation x=\frac{0±4\sqrt{7}}{4} when ± is plus.
x=-\sqrt{7}
Now solve the equation x=\frac{0±4\sqrt{7}}{4} when ± is minus.
x=\sqrt{7} x=-\sqrt{7}
The equation is now solved.