Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-11x+30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\times 30}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -11 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\times 30}}{2\times 2}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-8\times 30}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-11\right)±\sqrt{121-240}}{2\times 2}
Multiply -8 times 30.
x=\frac{-\left(-11\right)±\sqrt{-119}}{2\times 2}
Add 121 to -240.
x=\frac{-\left(-11\right)±\sqrt{119}i}{2\times 2}
Take the square root of -119.
x=\frac{11±\sqrt{119}i}{2\times 2}
The opposite of -11 is 11.
x=\frac{11±\sqrt{119}i}{4}
Multiply 2 times 2.
x=\frac{11+\sqrt{119}i}{4}
Now solve the equation x=\frac{11±\sqrt{119}i}{4} when ± is plus. Add 11 to i\sqrt{119}.
x=\frac{-\sqrt{119}i+11}{4}
Now solve the equation x=\frac{11±\sqrt{119}i}{4} when ± is minus. Subtract i\sqrt{119} from 11.
x=\frac{11+\sqrt{119}i}{4} x=\frac{-\sqrt{119}i+11}{4}
The equation is now solved.
2x^{2}-11x+30=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-11x+30-30=-30
Subtract 30 from both sides of the equation.
2x^{2}-11x=-30
Subtracting 30 from itself leaves 0.
\frac{2x^{2}-11x}{2}=-\frac{30}{2}
Divide both sides by 2.
x^{2}-\frac{11}{2}x=-\frac{30}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{11}{2}x=-15
Divide -30 by 2.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-15+\left(-\frac{11}{4}\right)^{2}
Divide -\frac{11}{2}, the coefficient of the x term, by 2 to get -\frac{11}{4}. Then add the square of -\frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-15+\frac{121}{16}
Square -\frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{119}{16}
Add -15 to \frac{121}{16}.
\left(x-\frac{11}{4}\right)^{2}=-\frac{119}{16}
Factor x^{2}-\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{-\frac{119}{16}}
Take the square root of both sides of the equation.
x-\frac{11}{4}=\frac{\sqrt{119}i}{4} x-\frac{11}{4}=-\frac{\sqrt{119}i}{4}
Simplify.
x=\frac{11+\sqrt{119}i}{4} x=\frac{-\sqrt{119}i+11}{4}
Add \frac{11}{4} to both sides of the equation.