Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-115x+1500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-115\right)±\sqrt{\left(-115\right)^{2}-4\times 2\times 1500}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -115 for b, and 1500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-115\right)±\sqrt{13225-4\times 2\times 1500}}{2\times 2}
Square -115.
x=\frac{-\left(-115\right)±\sqrt{13225-8\times 1500}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-115\right)±\sqrt{13225-12000}}{2\times 2}
Multiply -8 times 1500.
x=\frac{-\left(-115\right)±\sqrt{1225}}{2\times 2}
Add 13225 to -12000.
x=\frac{-\left(-115\right)±35}{2\times 2}
Take the square root of 1225.
x=\frac{115±35}{2\times 2}
The opposite of -115 is 115.
x=\frac{115±35}{4}
Multiply 2 times 2.
x=\frac{150}{4}
Now solve the equation x=\frac{115±35}{4} when ± is plus. Add 115 to 35.
x=\frac{75}{2}
Reduce the fraction \frac{150}{4} to lowest terms by extracting and canceling out 2.
x=\frac{80}{4}
Now solve the equation x=\frac{115±35}{4} when ± is minus. Subtract 35 from 115.
x=20
Divide 80 by 4.
x=\frac{75}{2} x=20
The equation is now solved.
2x^{2}-115x+1500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-115x+1500-1500=-1500
Subtract 1500 from both sides of the equation.
2x^{2}-115x=-1500
Subtracting 1500 from itself leaves 0.
\frac{2x^{2}-115x}{2}=-\frac{1500}{2}
Divide both sides by 2.
x^{2}-\frac{115}{2}x=-\frac{1500}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{115}{2}x=-750
Divide -1500 by 2.
x^{2}-\frac{115}{2}x+\left(-\frac{115}{4}\right)^{2}=-750+\left(-\frac{115}{4}\right)^{2}
Divide -\frac{115}{2}, the coefficient of the x term, by 2 to get -\frac{115}{4}. Then add the square of -\frac{115}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{115}{2}x+\frac{13225}{16}=-750+\frac{13225}{16}
Square -\frac{115}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{115}{2}x+\frac{13225}{16}=\frac{1225}{16}
Add -750 to \frac{13225}{16}.
\left(x-\frac{115}{4}\right)^{2}=\frac{1225}{16}
Factor x^{2}-\frac{115}{2}x+\frac{13225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{115}{4}\right)^{2}}=\sqrt{\frac{1225}{16}}
Take the square root of both sides of the equation.
x-\frac{115}{4}=\frac{35}{4} x-\frac{115}{4}=-\frac{35}{4}
Simplify.
x=\frac{75}{2} x=20
Add \frac{115}{4} to both sides of the equation.