Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

432x^{2}-27\times 27x-792=8\times 3x+18
Multiply both sides of the equation by 216, the least common multiple of 8,3,27,12.
432x^{2}-729x-792=8\times 3x+18
Multiply -27 and 27 to get -729.
432x^{2}-729x-792=24x+18
Multiply 8 and 3 to get 24.
432x^{2}-729x-792-24x=18
Subtract 24x from both sides.
432x^{2}-753x-792=18
Combine -729x and -24x to get -753x.
432x^{2}-753x-792-18=0
Subtract 18 from both sides.
432x^{2}-753x-810=0
Subtract 18 from -792 to get -810.
x=\frac{-\left(-753\right)±\sqrt{\left(-753\right)^{2}-4\times 432\left(-810\right)}}{2\times 432}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 432 for a, -753 for b, and -810 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-753\right)±\sqrt{567009-4\times 432\left(-810\right)}}{2\times 432}
Square -753.
x=\frac{-\left(-753\right)±\sqrt{567009-1728\left(-810\right)}}{2\times 432}
Multiply -4 times 432.
x=\frac{-\left(-753\right)±\sqrt{567009+1399680}}{2\times 432}
Multiply -1728 times -810.
x=\frac{-\left(-753\right)±\sqrt{1966689}}{2\times 432}
Add 567009 to 1399680.
x=\frac{-\left(-753\right)±3\sqrt{218521}}{2\times 432}
Take the square root of 1966689.
x=\frac{753±3\sqrt{218521}}{2\times 432}
The opposite of -753 is 753.
x=\frac{753±3\sqrt{218521}}{864}
Multiply 2 times 432.
x=\frac{3\sqrt{218521}+753}{864}
Now solve the equation x=\frac{753±3\sqrt{218521}}{864} when ± is plus. Add 753 to 3\sqrt{218521}.
x=\frac{\sqrt{218521}+251}{288}
Divide 753+3\sqrt{218521} by 864.
x=\frac{753-3\sqrt{218521}}{864}
Now solve the equation x=\frac{753±3\sqrt{218521}}{864} when ± is minus. Subtract 3\sqrt{218521} from 753.
x=\frac{251-\sqrt{218521}}{288}
Divide 753-3\sqrt{218521} by 864.
x=\frac{\sqrt{218521}+251}{288} x=\frac{251-\sqrt{218521}}{288}
The equation is now solved.
432x^{2}-27\times 27x-792=8\times 3x+18
Multiply both sides of the equation by 216, the least common multiple of 8,3,27,12.
432x^{2}-729x-792=8\times 3x+18
Multiply -27 and 27 to get -729.
432x^{2}-729x-792=24x+18
Multiply 8 and 3 to get 24.
432x^{2}-729x-792-24x=18
Subtract 24x from both sides.
432x^{2}-753x-792=18
Combine -729x and -24x to get -753x.
432x^{2}-753x=18+792
Add 792 to both sides.
432x^{2}-753x=810
Add 18 and 792 to get 810.
\frac{432x^{2}-753x}{432}=\frac{810}{432}
Divide both sides by 432.
x^{2}+\left(-\frac{753}{432}\right)x=\frac{810}{432}
Dividing by 432 undoes the multiplication by 432.
x^{2}-\frac{251}{144}x=\frac{810}{432}
Reduce the fraction \frac{-753}{432} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{251}{144}x=\frac{15}{8}
Reduce the fraction \frac{810}{432} to lowest terms by extracting and canceling out 54.
x^{2}-\frac{251}{144}x+\left(-\frac{251}{288}\right)^{2}=\frac{15}{8}+\left(-\frac{251}{288}\right)^{2}
Divide -\frac{251}{144}, the coefficient of the x term, by 2 to get -\frac{251}{288}. Then add the square of -\frac{251}{288} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{251}{144}x+\frac{63001}{82944}=\frac{15}{8}+\frac{63001}{82944}
Square -\frac{251}{288} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{251}{144}x+\frac{63001}{82944}=\frac{218521}{82944}
Add \frac{15}{8} to \frac{63001}{82944} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{251}{288}\right)^{2}=\frac{218521}{82944}
Factor x^{2}-\frac{251}{144}x+\frac{63001}{82944}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{251}{288}\right)^{2}}=\sqrt{\frac{218521}{82944}}
Take the square root of both sides of the equation.
x-\frac{251}{288}=\frac{\sqrt{218521}}{288} x-\frac{251}{288}=-\frac{\sqrt{218521}}{288}
Simplify.
x=\frac{\sqrt{218521}+251}{288} x=\frac{251-\sqrt{218521}}{288}
Add \frac{251}{288} to both sides of the equation.