Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-18x=-1
Subtract 18x from both sides.
2x^{2}-18x+1=0
Add 1 to both sides.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -18 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2}}{2\times 2}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-18\right)±\sqrt{316}}{2\times 2}
Add 324 to -8.
x=\frac{-\left(-18\right)±2\sqrt{79}}{2\times 2}
Take the square root of 316.
x=\frac{18±2\sqrt{79}}{2\times 2}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{79}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{79}+18}{4}
Now solve the equation x=\frac{18±2\sqrt{79}}{4} when ± is plus. Add 18 to 2\sqrt{79}.
x=\frac{\sqrt{79}+9}{2}
Divide 18+2\sqrt{79} by 4.
x=\frac{18-2\sqrt{79}}{4}
Now solve the equation x=\frac{18±2\sqrt{79}}{4} when ± is minus. Subtract 2\sqrt{79} from 18.
x=\frac{9-\sqrt{79}}{2}
Divide 18-2\sqrt{79} by 4.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
The equation is now solved.
2x^{2}-18x=-1
Subtract 18x from both sides.
\frac{2x^{2}-18x}{2}=-\frac{1}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{18}{2}\right)x=-\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-9x=-\frac{1}{2}
Divide -18 by 2.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{1}{2}+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-\frac{1}{2}+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{79}{4}
Add -\frac{1}{2} to \frac{81}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{2}\right)^{2}=\frac{79}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{79}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{\sqrt{79}}{2} x-\frac{9}{2}=-\frac{\sqrt{79}}{2}
Simplify.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
Add \frac{9}{2} to both sides of the equation.