Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+4x-11=x^{2}
Subtract 11 from both sides.
2x^{2}+4x-11-x^{2}=0
Subtract x^{2} from both sides.
x^{2}+4x-11=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x=\frac{-4±\sqrt{4^{2}-4\left(-11\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-11\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+44}}{2}
Multiply -4 times -11.
x=\frac{-4±\sqrt{60}}{2}
Add 16 to 44.
x=\frac{-4±2\sqrt{15}}{2}
Take the square root of 60.
x=\frac{2\sqrt{15}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{15}}{2} when ± is plus. Add -4 to 2\sqrt{15}.
x=\sqrt{15}-2
Divide -4+2\sqrt{15} by 2.
x=\frac{-2\sqrt{15}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from -4.
x=-\sqrt{15}-2
Divide -4-2\sqrt{15} by 2.
x=\sqrt{15}-2 x=-\sqrt{15}-2
The equation is now solved.
2x^{2}+4x-x^{2}=11
Subtract x^{2} from both sides.
x^{2}+4x=11
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+4x+2^{2}=11+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=11+4
Square 2.
x^{2}+4x+4=15
Add 11 to 4.
\left(x+2\right)^{2}=15
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+2=\sqrt{15} x+2=-\sqrt{15}
Simplify.
x=\sqrt{15}-2 x=-\sqrt{15}-2
Subtract 2 from both sides of the equation.
2x^{2}+4x-11=x^{2}
Subtract 11 from both sides.
2x^{2}+4x-11-x^{2}=0
Subtract x^{2} from both sides.
x^{2}+4x-11=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x=\frac{-4±\sqrt{4^{2}-4\left(-11\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-11\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+44}}{2}
Multiply -4 times -11.
x=\frac{-4±\sqrt{60}}{2}
Add 16 to 44.
x=\frac{-4±2\sqrt{15}}{2}
Take the square root of 60.
x=\frac{2\sqrt{15}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{15}}{2} when ± is plus. Add -4 to 2\sqrt{15}.
x=\sqrt{15}-2
Divide -4+2\sqrt{15} by 2.
x=\frac{-2\sqrt{15}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from -4.
x=-\sqrt{15}-2
Divide -4-2\sqrt{15} by 2.
x=\sqrt{15}-2 x=-\sqrt{15}-2
The equation is now solved.
2x^{2}+4x-x^{2}=11
Subtract x^{2} from both sides.
x^{2}+4x=11
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+4x+2^{2}=11+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=11+4
Square 2.
x^{2}+4x+4=15
Add 11 to 4.
\left(x+2\right)^{2}=15
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+2=\sqrt{15} x+2=-\sqrt{15}
Simplify.
x=\sqrt{15}-2 x=-\sqrt{15}-2
Subtract 2 from both sides of the equation.