Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=35 ab=2\times 125=250
Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx+125. To find a and b, set up a system to be solved.
1,250 2,125 5,50 10,25
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 250.
1+250=251 2+125=127 5+50=55 10+25=35
Calculate the sum for each pair.
a=10 b=25
The solution is the pair that gives sum 35.
\left(2x^{2}+10x\right)+\left(25x+125\right)
Rewrite 2x^{2}+35x+125 as \left(2x^{2}+10x\right)+\left(25x+125\right).
2x\left(x+5\right)+25\left(x+5\right)
Factor out 2x in the first and 25 in the second group.
\left(x+5\right)\left(2x+25\right)
Factor out common term x+5 by using distributive property.
2x^{2}+35x+125=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-35±\sqrt{35^{2}-4\times 2\times 125}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±\sqrt{1225-4\times 2\times 125}}{2\times 2}
Square 35.
x=\frac{-35±\sqrt{1225-8\times 125}}{2\times 2}
Multiply -4 times 2.
x=\frac{-35±\sqrt{1225-1000}}{2\times 2}
Multiply -8 times 125.
x=\frac{-35±\sqrt{225}}{2\times 2}
Add 1225 to -1000.
x=\frac{-35±15}{2\times 2}
Take the square root of 225.
x=\frac{-35±15}{4}
Multiply 2 times 2.
x=-\frac{20}{4}
Now solve the equation x=\frac{-35±15}{4} when ± is plus. Add -35 to 15.
x=-5
Divide -20 by 4.
x=-\frac{50}{4}
Now solve the equation x=\frac{-35±15}{4} when ± is minus. Subtract 15 from -35.
x=-\frac{25}{2}
Reduce the fraction \frac{-50}{4} to lowest terms by extracting and canceling out 2.
2x^{2}+35x+125=2\left(x-\left(-5\right)\right)\left(x-\left(-\frac{25}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5 for x_{1} and -\frac{25}{2} for x_{2}.
2x^{2}+35x+125=2\left(x+5\right)\left(x+\frac{25}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2x^{2}+35x+125=2\left(x+5\right)\times \frac{2x+25}{2}
Add \frac{25}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
2x^{2}+35x+125=\left(x+5\right)\left(2x+25\right)
Cancel out 2, the greatest common factor in 2 and 2.