Factor
2\left(x-16\right)\left(x+30\right)
Evaluate
2\left(x-16\right)\left(x+30\right)
Graph
Share
Copied to clipboard
2\left(x^{2}+14x-480\right)
Factor out 2.
a+b=14 ab=1\left(-480\right)=-480
Consider x^{2}+14x-480. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-480. To find a and b, set up a system to be solved.
-1,480 -2,240 -3,160 -4,120 -5,96 -6,80 -8,60 -10,48 -12,40 -15,32 -16,30 -20,24
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -480.
-1+480=479 -2+240=238 -3+160=157 -4+120=116 -5+96=91 -6+80=74 -8+60=52 -10+48=38 -12+40=28 -15+32=17 -16+30=14 -20+24=4
Calculate the sum for each pair.
a=-16 b=30
The solution is the pair that gives sum 14.
\left(x^{2}-16x\right)+\left(30x-480\right)
Rewrite x^{2}+14x-480 as \left(x^{2}-16x\right)+\left(30x-480\right).
x\left(x-16\right)+30\left(x-16\right)
Factor out x in the first and 30 in the second group.
\left(x-16\right)\left(x+30\right)
Factor out common term x-16 by using distributive property.
2\left(x-16\right)\left(x+30\right)
Rewrite the complete factored expression.
2x^{2}+28x-960=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-28±\sqrt{28^{2}-4\times 2\left(-960\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{784-4\times 2\left(-960\right)}}{2\times 2}
Square 28.
x=\frac{-28±\sqrt{784-8\left(-960\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-28±\sqrt{784+7680}}{2\times 2}
Multiply -8 times -960.
x=\frac{-28±\sqrt{8464}}{2\times 2}
Add 784 to 7680.
x=\frac{-28±92}{2\times 2}
Take the square root of 8464.
x=\frac{-28±92}{4}
Multiply 2 times 2.
x=\frac{64}{4}
Now solve the equation x=\frac{-28±92}{4} when ± is plus. Add -28 to 92.
x=16
Divide 64 by 4.
x=-\frac{120}{4}
Now solve the equation x=\frac{-28±92}{4} when ± is minus. Subtract 92 from -28.
x=-30
Divide -120 by 4.
2x^{2}+28x-960=2\left(x-16\right)\left(x-\left(-30\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 16 for x_{1} and -30 for x_{2}.
2x^{2}+28x-960=2\left(x-16\right)\left(x+30\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}